cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A075467 Trajectory of 270798 under the Reverse and Add! operation carried out in base 4, written in base 10.

This page as a plain text file.
%I A075467 #10 Oct 18 2019 21:14:55
%S A075467 270798,1005135,1994670,5058075,20047500,33313725,66545850,112201785,
%T A075467 225464610,368353785,835135950,1587633825,2841028950,5347819200,
%U A075467 5598498225,10862757750,21453946560,22456662705,43576370550
%N A075467 Trajectory of 270798 under the Reverse and Add! operation carried out in base 4, written in base 10.
%C A075467 The base 4 trajectory of 270798 = A075421(370) provably does not contain a palindrome. A proof along the lines of Klaus Brockhaus, On the 'Reverse and Add!' algorithm in base 2, can be based on the formula given below. - The generating function given describes the sequence from a(11) onward; the g.f. for the complete sequence is known but nearly twice as big.
%H A075467 Klaus Brockhaus, <a href="/A058042/a058042.txt">On the 'Reverse and Add!' algorithm in base 2</a>
%H A075467 <a href="/index/Res#RAA">Index entries for sequences related to Reverse and Add!</a>
%F A075467 a(0), ..., a(10) as above; for n > 10 and n = 5 (mod 6): a(n) = 5*4^(2*k+10)+15341035*4^k-15 where k = (n+1)/6; n = 0 (mod 6): a(n) = 10*4^(2*k+10)+9792150*4^k-10 where k = n/6; n = 1 (mod 6): a(n) = 20*4^(2*k+10)-1305620*4^k where k = (n-1)/6; n = 2 (mod 6): a(n) = 20*4^(2*k+10)+14361820*4^k-15 where k = (n-2)/6; n = 3 (mod 6): a(n) = 40*4^(2*k+10)+7833720*4^k-10 where k = (n-3)/6; n = 4 (mod 6): a(n) = 80*4^(2*k+10)-1305620*4^k where k = (n-4)/6. G.f.: -15*(1426085120*x^11+749251744*x^10+419191024*x^9-1430263104*x^8-715827880*x^7-369055228*x^6-352343296*x^5-222825800*x^4-155978060*x^3+356521280*x^2+189401930*x+105842255)/((x-1)*(x^2+x+1)*(2*x^3-1)*(2*x^3+1)*(4*x^3-1))
%e A075467 270798 (decimal) = 1002013032 -> 1002013032 + 2303102001 = 3311121033 = 1005135 (decimal).
%t A075467 NestWhileList[# + IntegerReverse[#, 4] &, 270798,  # !=
%t A075467 IntegerReverse[#, 4] &, 1, 23] (* _Robert Price_, Oct 18 2019 *)
%o A075467 (PARI) {m=270798; stop=20; c=0; while(c<stop,print1(k=m,","); rev=0; while(k>0,d=divrem(k,4); k=d[1]; rev=4*rev+d[2]); c++; m=m+rev)}
%Y A075467 Cf. A075153, A075421, A075466.
%K A075467 base,nonn
%O A075467 0,1
%A A075467 _Klaus Brockhaus_, Sep 18 2002