This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A075482 #20 Oct 09 2018 15:15:20 %S A075482 12,14,12,45,12,14,12,17,12,14,12,33,12,14,12,20,12,14,12,25,12,14,12, %T A075482 17,12,14,12,20,12,14,12,30,12,14,12,25,12,14,12,17,12,14,12,30,12,14, %U A075482 12,22,12,14,12,69,12,14,12,17,12,14,12,22,12,14,12,22,12,14,12,82,12 %N A075482 Number of iteration that first becomes smaller than the initial value if Collatz-function (A006370) is iterated, starting with numbers of the form 64n + 59. %C A075482 1stSubmergeLengths[=A074473] with initial values belonging to other residue classes modulo 64 are either listed in A075476-A075483 or can be easily determined. For 64k+2s the first sink below initial value is at 2nd iterate; for 64k+4s+1 the first submerge below initial value comes at 4th term of iteration list; finally if initial value is of 64k+4s+3 form or moreover initial value = 64k+r, r = 3, 11, 19, 23, 35, 43, 51, 55, then for all k first sink emerges at the 7th, 9th, 7th, 9th, 7th, 9th, 7th, 9th iterates, respectively. %H A075482 Antti Karttunen, <a href="/A075482/b075482.txt">Table of n, a(n) for n = 0..16384</a> %H A075482 <a href="/index/3#3x1">Index entries for sequences related to 3x+1 (or Collatz) problem</a> %F A075482 a(n) = A074473(64n + 59). %e A075482 n=0: 64n + 59 = 59, the list = {59,178,89,268,134,67,202,101,304,152,76,38,...} the 12th term = 38 < 59 = the initial value, so a(0)=12. %t A075482 Table[Function[m, Length@ NestWhileList[If[EvenQ@ #, #/2, 3 # + 1] &, m, # >= m - 1 &]][64 n + 59], {n, 0, 84}] (* _Michael De Vlieger_, Mar 25 2017 *) %o A075482 (PARI) %o A075482 A006370(n) = if(n%2, 3*n+1, n/2); %o A075482 A074473(n) = if(1==n,n,my(org_n=n); for(i=1,oo,if(n<org_n, return(i)); n = A006370(n))); %o A075482 A075482(n) = A074473((64*n)+59); \\ _Antti Karttunen_, Oct 09 2018 %Y A075482 Cf. A006370, A074472, A074473, A075476, A075477-A075483. %K A075482 nonn %O A075482 0,1 %A A075482 _Labos Elemer_, Sep 24 2002