cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A075501 Stirling2 triangle with scaled diagonals (powers of 6).

Original entry on oeis.org

1, 6, 1, 36, 18, 1, 216, 252, 36, 1, 1296, 3240, 900, 60, 1, 7776, 40176, 19440, 2340, 90, 1, 46656, 489888, 390096, 75600, 5040, 126, 1, 279936, 5925312, 7511616, 2204496, 226800, 9576, 168, 1, 1679616, 71383680
Offset: 1

Views

Author

Wolfdieter Lang, Oct 02 2002

Keywords

Comments

This is a lower triangular infinite matrix of the Jabotinsky type. See the Knuth reference given in A039692 for exponential convolution arrays.
The row polynomials p(n,x) := Sum_{m=1..n} a(n,m)x^m, n >= 1, have e.g.f. J(x; z)= exp((exp(6*z) - 1)*x/6) - 1.

Examples

			[1]; [6,1]; [36,18,1]; ...; p(3,x) = x(36 + 18*x + x^2).
From _Andrew Howroyd_, Mar 25 2017: (Start)
Triangle starts
*      1
*      6       1
*     36      18       1
*    216     252      36       1
*   1296    3240     900      60      1
*   7776   40176   19440    2340     90    1
*  46656  489888  390096   75600   5040  126   1
* 279936 5925312 7511616 2204496 226800 9576 168 1
(End)
		

Crossrefs

Columns 1-7 are A000400, A016175, A075916-A075920. Row sums are A005012.

Programs

  • Maple
    # The function BellMatrix is defined in A264428.
    # Adds (1,0,0,0, ..) as column 0.
    BellMatrix(n -> 6^n, 9); # Peter Luschny, Jan 28 2016
  • Mathematica
    Flatten[Table[6^(n - m) StirlingS2[n, m], {n, 11}, {m, n}]] (* Indranil Ghosh, Mar 25 2017 *)
    BellMatrix[f_Function, len_] := With[{t = Array[f, len, 0]}, Table[BellY[n, k, t], {n, 0, len - 1}, {k, 0, len - 1}]];
    rows = 10;
    M = BellMatrix[6^#&, rows];
    Table[M[[n, k]], {n, 2, rows}, {k, 2, n}] // Flatten (* Jean-François Alcover, Jun 23 2018, after Peter Luschny *)
  • PARI
    for(n=1, 11, for(m=1, n, print1(6^(n - m) * stirling(n, m, 2),", ");); print();) \\ Indranil Ghosh, Mar 25 2017

Formula

a(n, m) = (6^(n-m)) * stirling2(n, m).
a(n, m) = (Sum_{p=0..m-1} A075513(m, p)*((p+1)*6)^(n-m))/(m-1)! for n >= m >= 1, else 0.
a(n, m) = 6m*a(n-1, m) + a(n-1, m-1), n >= m >= 1, else 0, with a(n, 0) := 0 and a(1, 1)=1.
G.f. for m-th column: (x^m)/Product_{k=1..m}(1-6k*x), m >= 1.
E.g.f. for m-th column: (((exp(6x)-1)/6)^m)/m!, m >= 1.