This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A075504 #17 Mar 25 2017 20:47:30 %S A075504 1,9,1,81,27,1,729,567,54,1,6561,10935,2025,90,1,59049,203391,65610, %T A075504 5265,135,1,531441,3720087,1974861,255150,11340,189,1,4782969, %U A075504 67493007,57041334,11160261,765450,21546,252,1 %N A075504 Stirling2 triangle with scaled diagonals (powers of 9). %C A075504 This is a lower triangular infinite matrix of the Jabotinsky type. See the Knuth reference given in A039692 for exponential convolution arrays. %C A075504 The row polynomials p(n,x) := Sum_{m=1..n} a(n,m)x^m, n >= 1, have e.g.f. J(x; z)= exp((exp(9*z) - 1)*x/9) - 1. %C A075504 Row sums give A075508(n), n >= 1. The columns (without leading zeros) give A001019 (powers of 9), A076008-A076013 for m=1..7. %H A075504 Andrew Howroyd, <a href="/A075504/b075504.txt">Table of n, a(n) for n = 1..1275</a> %F A075504 a(n, m) = (9^(n-m)) * stirling2(n, m). %F A075504 a(n, m) = Sum_{p=0..m-1} (A075513(m, p)*((p+1)*9)^(n-m))/(m-1)! for n >= m >= 1, else 0. %F A075504 a(n, m) = 9m*a(n-1, m) + a(n-1, m-1), n >= m >= 1, else 0, with a(n, 0) := 0 and a(1, 1)=1. %F A075504 G.f. for m-th column: (x^m)/Product_{k=1..m}(1-9k*x), m >= 1. %F A075504 E.g.f. for m-th column: (((exp(9x) - 1)/9)^m)/m!, m >= 1. %e A075504 [1]; [9,1]; [81,27,1]; ...; p(3,x) = x(81 + 27*x + x^2). %e A075504 From _Andrew Howroyd_, Mar 25 2017: (Start) %e A075504 Triangle starts %e A075504 * 1 %e A075504 * 9 1 %e A075504 * 81 27 1 %e A075504 * 729 567 54 1 %e A075504 * 6561 10935 2025 90 1 %e A075504 * 59049 203391 65610 5265 135 1 %e A075504 * 531441 3720087 1974861 255150 11340 189 1 %e A075504 * 4782969 67493007 57041334 11160261 765450 21546 252 1 %e A075504 (End) %t A075504 Flatten[Table[9^(n - m) StirlingS2[n, m], {n, 11}, {m, n}]] (* _Indranil Ghosh_, Mar 25 2017 *) %o A075504 (PARI) for(n=1, 11, for(m=1, n, print1(9^(n - m) * stirling(n, m, 2),", ");); print();) \\ _Indranil Ghosh_, Mar 25 2017 %Y A075504 Cf. A075503, A075505. %Y A075504 Columns 2-7 are A076008-A076013. %K A075504 nonn,easy,tabl %O A075504 1,2 %A A075504 _Wolfdieter Lang_, Oct 02 2002