A075505 Stirling2 triangle with scaled diagonals (powers of 10).
1, 10, 1, 100, 30, 1, 1000, 700, 60, 1, 10000, 15000, 2500, 100, 1, 100000, 310000, 90000, 6500, 150, 1, 1000000, 6300000, 3010000, 350000, 14000, 210, 1, 10000000, 127000000, 96600000, 17010000, 1050000, 26600, 280, 1
Offset: 1
Examples
[1]; [10,1]; [100,30,1]; ...; p(3,x) = x(100 + 30*x + x^2). From _Andrew Howroyd_, Mar 25 2017: (Start) Triangle starts * 1 * 10 1 * 100 30 1 * 1000 700 60 1 * 10000 15000 2500 100 1 * 100000 310000 90000 6500 150 1 * 1000000 6300000 3010000 350000 14000 210 1 * 10000000 127000000 96600000 17010000 1050000 26600 280 1 (End)
Links
- Andrew Howroyd, Table of n, a(n) for n = 1..1275
- Paweł Hitczenko, A class of polynomial recurrences resulting in (n/log n, n/log^2 n)-asymptotic normality, arXiv:2403.03422 [math.CO], 2024. See p. 8.
Programs
-
Mathematica
Flatten[Table[10^(n - m) StirlingS2[n, m], {n, 11}, {m, n}]] (* Indranil Ghosh, Mar 25 2017 *)
-
PARI
for(n=1, 11, for(m=1, n, print1(10^(n - m) * stirling(n, m, 2),", ");); print();) \\ Indranil Ghosh, Mar 25 2017
Formula
a(n, m) = (10^(n-m)) * stirling2(n, m).
a(n, m) = (Sum_{p=0..m-1} A075513(m, p)*((p+1)*10)^(n-m))/(m-1)! for n >= m >= 1, else 0.
a(n, m) = 10m*a(n-1, m) + a(n-1, m-1), n >= m >= 1, else 0, with a(n, 0) := 0 and a(1, 1)=1.
G.f. for m-th column: (x^m)/Product_{k=1..m} (1-10k*x), m >= 1.
E.g.f. for m-th column: (((exp(10x)-1)/10)^m)/m!, m >= 1.
Comments