cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A075513 Triangle read by rows. T(n, m) are the coefficients of Sidi polynomials.

This page as a plain text file.
%I A075513 #70 May 12 2025 12:00:29
%S A075513 1,-1,2,1,-8,9,-1,24,-81,64,1,-64,486,-1024,625,-1,160,-2430,10240,
%T A075513 -15625,7776,1,-384,10935,-81920,234375,-279936,117649,-1,896,-45927,
%U A075513 573440,-2734375,5878656,-5764801,2097152,1,-2048,183708,-3670016,27343750,-94058496,161414428,-134217728,43046721
%N A075513 Triangle read by rows. T(n, m) are the coefficients of Sidi polynomials.
%C A075513 Coefficients of the Sidi polynomials (-1)^(n-1)*D_{n-1,1,n-1}(x), for n >=1, where D_{k,n,m}(z) is given in Theorem 4.2., p. 862, of Sidi [1980].
%C A075513 The row polynomials p(n, x) := Sum_{m=0..n-1} a(n, m)x^m, n >= 1, are obtained from ((Eu(x)^n)*(x-1)^n)/(n*x), where Eu(x) := xd/dx is the Euler-derivative with respect to x.
%C A075513 The row polynomials p(n, y) := Sum_{m=0..n-1} a(n, m)*y^m, n >= 1, are also obtained from ((d^m/dx^m)((exp(x)-1)^m)/m)/exp(x) after replacement of exp(x) by y. Here (d^m/dx^m)f(x), m >= 1, denotes m-fold differentiation of f(x) with respect to x.
%C A075513 b(k,m,n) := (Sum_{p=0..m-1} (a(m, p)*((p+1)*k)^n))/(m-1)!, n >= 0, has g.f. 1/Product_{p=1..m} (1 - k*p*x) for k = 1, 2,... and m = 1, 2,...
%C A075513 The (signed) row sums give A000142(n-1), n >= 1, (factorials) and (unsigned) A074932(n).
%C A075513 The (unsigned) columns give A000012 (powers of 1), 2*A001787(n+1), (3^2)*A027472(n), (4^3)*A038846(n-1), (5^4)*A036071(n-5), (6^5)*A036084(n-6), (7^6)*A036226(n-7), (8^7)*A053107(n-8) for m=0..7.
%C A075513 Right edge of triangle is A000169. - _Michel Marcus_, May 17 2013
%D A075513 A. Sidi, Practical Extrapolation Methods: Theory and Applications, Cambridge University Press, Cambridge, 2003.
%H A075513 Wolfdieter Lang, <a href="/A075513/a075513.pdf">On a Certain Family of Sidi Polynomials</a>, May 2023.
%H A075513 Harlan J. Brothers, <a href="https://doi.org/10.35834/2025/3701067">Pascal's triangle, Sidi polynomials, and powers of e</a>, Missouri J. Math. Sci. (2025) Vol. 37, No. 1, 67-78.
%H A075513 Doron S. Lubinsky and Herbert Stahl, <a href="http://people.math.gatech.edu/~lubinsky/Research%20papers/GatlinburgProcRohrsVn.pdf">Some Explicit Biorthogonal Polynomials</a>, (IN) Approximation Theory XI, (C.K. Chui, M. Neamtu, L. Schumaker, eds.), Nashboro Press, Nashville, 2005, pp. 279-285.
%H A075513 Avram Sidi, <a href="https://doi.org/10.1090/S0025-5718-1980-0572861-2">Numerical Quadrature and Nonlinear Sequence Transformations; Unified Rules for Efficient Computation of Integrals with Algebraic and Logarithmic Endpoint Singularities</a>, Math. Comp., 35 (1980), 851-874.
%F A075513 T(n, m) = ((-1)^(n-m-1)) binomial(n-1, m)*(m+1)^(n-1), n >= m+1 >= 1, else 0.
%F A075513 G.f. for m-th column: ((m+1)^m)(x/(1+(m+1)*x))^(m+1), m >= 0.
%F A075513 E.g.f.: -LambertW(-x*y*exp(-x))/((1+LambertW(-x*y*exp(-x)))*x*y). - _Vladeta Jovovic_, Feb 13 2008 [corrected for offset 0 <= m <= n. For offset n >= 1 take the integral over x. - _Wolfdieter Lang_, Oct 12 2022]
%F A075513 T(n, k) = S(n, k+1) / n where S(, ) is triangle in A258773. - _Michael Somos_, May 13 2018
%F A075513 E.g.f. of column k, with offset n >= 0: exp(-(k + 1)*x)*((k + 1)*x)^k/k!. - _Wolfdieter Lang_, Oct 20 2022
%F A075513 E.g.f: 1/(exp(LambertW(-exp(-x)*x*y) + x) - x*y) assuming offset = 0. - _Peter Luschny_, Oct 21 2022
%e A075513 The triangle T(n, m)  begins:
%e A075513   n\m 0     1      2        3        4         5         6          7       8
%e A075513   1:  1
%e A075513   2: -1     2
%e A075513   3:  1    -8      9
%e A075513   4: -1    24    -81       64
%e A075513   5:  1   -64    486    -1024      625
%e A075513   6: -1   160  -2430    10240   -15625      7776
%e A075513   7:  1  -384  10935   -81920   234375   -279936    117649
%e A075513   8: -1   896 -45927   573440 -2734375   5878656  -5764801    2097152
%e A075513   9:  1 -2048 183708 -3670016 27343750 -94058496 161414428 -134217728 4304672
%e A075513   [Reformatted by _Wolfdieter Lang_, Oct 12 2022]
%e A075513 -----------------------------------------------------------------------------
%e A075513 p(2,x) = -1+2*x = (1/(2*x))*x*(d/dx)*x*(d/dx)*(x-1)^2.
%p A075513 # Assuming offset 0.
%p A075513 seq(seq((-1)^(n-k)*binomial(n, k)*(k+1)^n, k=0..n), n=0..8);
%p A075513 # Alternative:
%p A075513 egf := x -> 1/(exp(LambertW(-exp(-x)*x*y) + x) - x*y):
%p A075513 ser := x -> series(egf(x), x, 12):
%p A075513 row := n -> seq(coeff(n!*coeff(ser(x), x, n), y, k), k=0..n):
%p A075513 seq(print(row(n)), n = 0..8); # _Peter Luschny_, Oct 21 2022
%t A075513 p[n_, x_] := p[n, x] = Nest[ x*D[#, x]& , (x-1)^n, n]/(n*x); a[n_, m_] := Coefficient[ p[n, x], x, m]; Table[a[n, m], {n, 1, 9}, {m, 0, n-1}] // Flatten (* _Jean-François Alcover_, Jul 03 2013 *)
%o A075513 (PARI) tabl(nn) = {for (n=1, nn, for (m=0, n-1, print1((-1)^(n-m-1)*binomial(n-1, m)*(m+1)^(n-1), ", ");); print(););} \\ _Michel Marcus_, May 17 2013
%Y A075513 Cf. A075510, A075511, A075512, A074932, A075515, A075516, A075906..A075925, A076002..A076013, A258773.
%K A075513 sign,tabl,easy
%O A075513 1,3
%A A075513 _Wolfdieter Lang_, Oct 02 2002