This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A075556 #15 Dec 08 2024 17:25:13 %S A075556 3,2,13,5,11,19,29,17,7,71,53,37,23,67,181,0,47,31,557,61,43,59,41,97, %T A075556 0,199,73,197,167,139,113,89,163,191,109,0,107,83,157,401,103,79,101, %U A075556 317,151,179,149,241,0,239,349,173,271,307,269,233,619,383,137,229 %N A075556 Smallest prime p not occurring earlier such that p+n is a square, or 0 if no such p exists. %C A075556 a(n)=0 or 2*sqrt(n)+1 for square n. Apparently the only cases where it is 2*sqrt(n)+1 are n=1, 4 and 9. - _Ralf Stephan_, Mar 30 2003, corrected by _Robert Israel_, Dec 07 2024 %H A075556 Robert Israel, <a href="/A075556/b075556.txt">Table of n, a(n) for n = 1..10000</a> %p A075556 for n from 1 to 100 do %p A075556 if issqr(n) then %p A075556 r:= sqrt(n); %p A075556 if isprime(2*r+1) and not assigned(S[2*r+1]) then R[n]:= 2*r+1; S[2*r+1]:= n else R[n] := 0 fi; %p A075556 else %p A075556 for k from ceil(sqrt(n)) do %p A075556 if not assigned(S[k^2-n]) and isprime(k^2-n) then R[n]:= k^2-n; S[k^2-n]:= n; break fi; %p A075556 od %p A075556 fi; %p A075556 od: %p A075556 seq(R[i],i=1..100); # _Robert Israel_, Dec 06 2024 %o A075556 (PARI) v=vector(1000000); for(n=1, 100, f=0; forprime(p=2, 1000000, if(!v[p]&&issquare(p+n), f=p; break)); if(f, print1(f", "); v[f]=1, print1("0, "))); %Y A075556 Cf. A075555, A075557. %K A075556 nonn %O A075556 1,1 %A A075556 _Amarnath Murthy_, Sep 23 2002 %E A075556 More terms from _Ralf Stephan_, Mar 30 2003