This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A075577 #20 Apr 26 2021 01:48:18 %S A075577 4,25,625,900,1225,4900,7225,10000,12100,50625,52900,67600,81225, %T A075577 84100,102400,152100,168100,225625,240100,245025,265225,348100,462400, %U A075577 483025,504100,562500,577600,714025,902500,1166400,1210000,1288225,1380625,1416100,1428025 %N A075577 k^2 is a term if k^2 + (k-1)^2 and k^2 + (k+1)^2 are primes. %C A075577 For a(2) onwards, a(n) == 0 (mod 25). %H A075577 Michael S. Branicky, <a href="/A075577/b075577.txt">Table of n, a(n) for n = 1..10000</a> %F A075577 a(n) = A109306(n)^2. - _David A. Corneth_, Apr 25 2021 %e A075577 900 = 30^2 is a term because 30^2 + 29^2 = 1741 is prime and 30^2 + 31^2 = 1861 is prime. %t A075577 Do[s=n^2+(n-1)^2; s1=n^2+(n+1)^2; If[PrimeQ[s]&&PrimeQ[s1], Print[n^2]], {n, 1, 5000}] %o A075577 (Python) %o A075577 from sympy import isprime %o A075577 def aupto(limit): %o A075577 alst, is2 = [], False %o A075577 for k in range(1, int(limit**.5) + 2): %o A075577 is1, is2 = is2, isprime(k**2 + (k+1)**2) %o A075577 if is1 and is2: alst.append(k**2) %o A075577 return alst %o A075577 print(aupto(1500000)) # _Michael S. Branicky_, Apr 25 2021 %Y A075577 Cf. A109306. %K A075577 nonn %O A075577 1,1 %A A075577 _Amarnath Murthy_, Sep 25 2002 %E A075577 More terms from _Labos Elemer_, Sep 27 2002 %E A075577 a(34) and beyond from _Michael S. Branicky_, Apr 25 2021