A075598 a(1) = 5 and then the smallest prime that is obtained by placing digits on both sides of the previous term. Or smallest prime that encompasses a(n-1).
5, 151, 11519, 2115193, 121151939, 21211519397, 4212115193971, 342121151939719, 43421211519397199, 2434212115193971993, 224342121151939719937, 122434212115193971993787, 51224342121151939719937871, 2512243421211519397199378719, 325122434212115193971993787197, 93251224342121151939719937871973
Offset: 1
Links
- Robert Israel, Table of n, a(n) for n = 1..330
Programs
-
Maple
f:= proc(n) local m,d,d1,v,x,y,y0,z,found; m:= ilog10(n); v:= infinity; for d from 2 do for d1 from 1 to d-1 do found:= false; for x from 10^(d1-1) to 10^d1-1 while not found do if d-d1=1 then y0:= 1 else y0:= 10^(d-d1-1)+1 fi; for y from y0 to 10^(d-d1)-1 by 2 do z:= y+10^(d-d1)*n + 10^(d-d1+m+1)*x; if isprime(z) then v:= min(v,z); found:= true; break fi od od; od; if v < infinity then return v fi od end proc: A[1]:= 5: for n from 2 to 20 do A[n]:= f(A[n-1]) od: seq(A[n],n=1..20); # Robert Israel, Aug 28 2018
Extensions
More terms from Sascha Kurz, Jan 20 2003
Terms a(13) and beyond from Robert Israel, Aug 28 2018