This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A075702 #24 Mar 03 2025 21:39:40 %S A075702 2160,3048,27094,251712,505768,936240,2182656,2582372,487568736, %T A075702 1261336587,1424530096 %N A075702 Numbers k such that the k-th prime divides the k-th Fibonacci number. %C A075702 a(12) > 2*10^9. - _Giovanni Resta_, Jul 20 2013 %C A075702 Let r be a root of X^2 + 3*X + 1 in GF(prime(n)^2). Then n is in the sequence if and only if r^n = 1. - _Robert Israel_, Dec 24 2014 %p A075702 f:= proc(n) %p A075702 local p, m, r, t, F; %p A075702 p:= ithprime(n); %p A075702 if member(p mod 5, {1,4}) then %p A075702 m:= igcd(n,p-1); %p A075702 r:= (numtheory:-msqrt(5,p)-3)/2 mod p; %p A075702 r &^ m mod p = 1 %p A075702 else %p A075702 F:= GF(p,2,t^2+3*t+1); %p A075702 m:= igcd(n,p^2-1); %p A075702 r:= F:-ConvertIn(t); %p A075702 F:-ConvertOut(F:-`^`(r,m)) = 1 %p A075702 fi %p A075702 end proc: %p A075702 select(f, [$4 .. 10^5]); # _Robert Israel_, Dec 24 2014 %t A075702 (* Mathematica's Fibonacci function is not used so as to speed up the search. *) fibo = {1, 1}; divFiboNPrimes = {}; Do[len = Length[fibo]; n = fibo[[len]] + fibo[[len - 1]]; fibo = Append[fibo, n]; If[Mod[n, Prime[i]] == 0, divFiboNPrimes = Append[divFiboNPrimes, i]], {i, 3, 10^7}]; divFiboNPrimes %o A075702 (PARI) v=0; w=1; for(n=2,m,f=v+w; if(f%prime(n)==0,print1(n,",")); v=w; w=f) %Y A075702 Cf. A000040, A000045, A072123. %K A075702 nonn,more %O A075702 1,1 %A A075702 _Joseph L. Pe_, Oct 02 2002 %E A075702 a(4)-a(6) from _Klaus Brockhaus_, Oct 04 2002 %E A075702 a(7)-a(8) from _Zak Seidov_, Nov 03 2009 %E A075702 a(9)-a(11) from _Giovanni Resta_, Jul 20 2013