This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A075712 #22 Nov 14 2021 01:21:48 %S A075712 2,5,11,23,47,3,7,13,17,19,29,59,31,37,41,83,167,43,53,107,61,67,71, %T A075712 73,79,89,179,359,719,1439,2879,97,101,103,109,113,227,127,131,263, %U A075712 137,139,149,151,157,163,173,347,181,191,383,193,197,199,211,223,229,233 %N A075712 Rearrangement of primes into Germain groups (or Cunningham chains). %C A075712 In each group, p(i+1) = 2*p(i)+1. %C A075712 The groups are also known as Cunningham chains of the first kind. %H A075712 Michael De Vlieger, <a href="/A075712/b075712.txt">Table of n, a(n) for n = 1..10000</a> %e A075712 The groups are: %e A075712 {2, 5, 11, 23, 47}, %e A075712 {3, 7}, %e A075712 {13}, %e A075712 {17}, %e A075712 {19}, %e A075712 {29, 59}, %e A075712 {31}, %e A075712 {37}, %e A075712 {41, 83, 167}, %e A075712 {43}, %e A075712 {53, 107}, %e A075712 {61}, %e A075712 {67}, %e A075712 {71}, %e A075712 {73}, %e A075712 {79}, %e A075712 {89, 179, 359, 719, 1439, 2879}, %e A075712 {97}, %e A075712 {101}, %e A075712 {103}, %e A075712 {109}, %e A075712 {113, 227}, %e A075712 {127}, %e A075712 {131, 263}, %e A075712 {137}, %e A075712 {139}, %e A075712 ... %t A075712 Block[{a = {2}, j = 1, k, p}, Do[k = j; If[PrimeQ@ a[[-1]], AppendTo[a, 2 a[[-1]] + 1], While[! FreeQ[a, Set[p, Prime[k]]], k++]; j++; Set[a, Append[a[[1 ;; -2]], p]]], 10^3]; a] (* _Michael De Vlieger_, Nov 17 2020 *) %o A075712 (PARI) first(n) = my(res=List([2,5,11,23,47])); forprime(p=3, oo, if(!isprime((p-1)>>1), listput(res,p); c = 2*p+1; while(isprime(c), listput(res,c); c=2*c+1)); if(#res>n,return(res))); res \\ _David A. Corneth_, Nov 13 2021 %Y A075712 Cf. A005384, A059452, A059453, A059455, A059456, A053176. %Y A075712 See also A181697. %Y A075712 See A059456 for initial terms, A338945 for lengths. %K A075712 nonn,tabf %O A075712 1,1 %A A075712 _Zak Seidov_, Oct 03 2002 %E A075712 Edited by _N. J. A. Sloane_, Nov 13 2021 %E A075712 More terms from _David A. Corneth_, Nov 13 2021