A075754 Number of n X n (0,1) matrices containing exactly five 1's in each row and in each column.
1, 720, 3110940, 24046189440, 315031400802720, 6736218287430460752, 226885231700215713535680, 11649337108041078980732943360, 885282776210120715086715619724160, 96986285294151066094112970262797953280
Offset: 5
Keywords
References
- B. D. McKay, Applications of a technique for labeled enumeration, Congressus Numerantium, 40 (1983) 207-221.
Links
- Vaclav Kotesovec, Table of n, a(n) for n = 5..61, (computed with program by Doron Zeilberger, see link below)
- B. D. McKay, 0-1 matrices with constant row and column sums
- E. R. Canfield and B. D. McKay, Asymptotic enumeration of dense 0-1 matrices with equal row and column sums.
- Shalosh B. Ekhad and Doron Zeilberger, In How Many Ways Can n (Straight) Men and n (Straight) Women Get Married, if Each Person Has Exactly k Spouses, Maple package Bipartite.
- M. L. Stein and P. R. Stein, Enumeration of Stochastic Matrices with Integer Elements, Report LA-4434, Los Alamos Scientific Laboratory of the University of California, Los Alamos, NM, Jun 1970. [Annotated scanned copy]
- Index entries for sequences related to binary matrices
Crossrefs
Column 5 of A008300.
Formula
From Vaclav Kotesovec, Aug 04 2013: (Start)
a(n) ~ exp(-1/2)*binomial(n,5)^(2*n) / binomial(n^2,5*n), (Canfield + McKay, 2004)
a(n) ~ sqrt(Pi)*2^(1/2-6*n)*5^(3*n+1/2) *9^(-n)*exp(-5*n-8)*n^(5*n+1/2)
(End)
Extensions
More terms from Brendan McKay, Jan 08 2005
Comments