This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A075778 #53 Jan 05 2025 19:51:37 %S A075778 7,5,4,8,7,7,6,6,6,2,4,6,6,9,2,7,6,0,0,4,9,5,0,8,8,9,6,3,5,8,5,2,8,6, %T A075778 9,1,8,9,4,6,0,6,6,1,7,7,7,2,7,9,3,1,4,3,9,8,9,2,8,3,9,7,0,6,4,6,0,8, %U A075778 0,6,5,5,1,2,8,0,8,1,0,9,0,7,3,8,2,2,7,0,9,2,8,4,2,2,5,0,3,0,3,6,4,8,3,7,7 %N A075778 Decimal expansion of the real root of x^3 + x^2 - 1. %C A075778 Also decimal expansion of the root of x^(1/sqrt(x+1)) = (1/sqrt(x+1))^x. The root of (1/x)^(1/sqrt(x+1)) = (1/sqrt(x+1))^(1/x) is the golden ratio. - _Michel Lagneau_, Apr 17 2012 %C A075778 The following decomposition holds true: X^3 + X^2 - 1 = (X - r)*(X + i * e^(-i*a) * r^(-1/2))*(X - i * e^(i*a) * r^(-1/2)), where a = arcsin(1/(2*r^(3/2))), see A218197 for the decimal expansion of a and the paper of Witula et al. for details. - _Roman Witula_, Oct 22 2012 %D A075778 Roman Witula, E. Hetmaniok, D. Slota, Sums of the powers of any order roots taken from the roots of a given polynomial, submitted to Proceedings of the 15th International Conference on Fibonacci Numbers and Their Applications, Eger, Hungary, 2012. %H A075778 H. R. P. Ferguson, <a href="https://web.archive.org/web/2024*/https://www.fq.math.ca/Scanned/14-3/ferguson.pdf">On a Generalization of the Fibonacci Numbers Useful in Memory Allocation Schema or All About the Zeroes of Z^k - Z^{k - 1} - 1, k > 0</a>, Fibonacci Quarterly, Volume 14, Number 3, October, 1976 (see Table 2 p. 238). %H A075778 <a href="/index/Al#algebraic_03">Index entries for algebraic numbers, degree 3</a> %F A075778 Let 0 < a < 1 be any real number. Then a is the lesser and 1 is the greater and a^2/1 = 1/(a+1) and a^3 + a^2 - 1 = 0. Solving this using PARI we have 0.7548776662466927600495088964... . The general cubic can also be solved in radicals. %F A075778 Equals -(1/3) + (1/3)*(25/2 - (3*sqrt(69))/2)^(1/3) + (1/3)*((1/2)*(25 + 3*sqrt(69)))^(1/3). %e A075778 0.7548776662466927600495088963585286918946066... %p A075778 A075778 := proc() %p A075778 1/3-root[3](25/2-3*sqrt(69)/2)/3 -root[3](25/2+3*sqrt(69)/2)/3; %p A075778 -% ; %p A075778 end proc: # _R. J. Mathar_, Jan 22 2013 %t A075778 RealDigits[N[Solve[x^3 + x^2 - 1 == 0, x] [[1]] [[1, 2]], 111]] [[1]] %t A075778 RealDigits[x /. FindRoot[x^3 + x^2 == 1, {x, 1}, WorkingPrecision -> 120]][[1]] (* _Harvey P. Dale_, Nov 23 2012 *) %o A075778 (PARI) solve(x=0, 1, x^3+x^2-1) %o A075778 (PARI) polrootsreal(x^3 + x^2 - 1)[1] \\ _Charles R Greathouse IV_, Jul 23 2020 %Y A075778 Cf. A060006 (inverse), A210462, A210463. %K A075778 nonn,cons %O A075778 0,1 %A A075778 _Cino Hilliard_, Oct 09 2002 %E A075778 More terms from _Robert G. Wilson v_, Oct 10 2002