cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A075779 Triangle T(n,k) = f(n,k,n-1), n >= 2, 1 <= k <= n-1, where f is given below.

This page as a plain text file.
%I A075779 #13 Jan 14 2014 10:01:18
%S A075779 2,6,6,12,16,12,20,35,35,20,30,66,84,66,30,42,112,175,175,112,42,56,
%T A075779 176,328,400,328,176,56,72,261,567,819,819,567,261,72,90,370,920,1540,
%U A075779 1820,1540,920,370,90,110,506,1419,2706,3696,3696,2706,1419,506,110,132,672
%N A075779 Triangle T(n,k) = f(n,k,n-1), n >= 2, 1 <= k <= n-1, where f is given below.
%C A075779 Row sums give sequence A033484(n)*(n+2). Essentially same triangle as A051597(n,k)*(n+2). - _Philippe Deléham_, Oct 01 2003
%H A075779 Michel Lassalle, <a href="http://arXiv.org/abs/math.CO/0210208">A new family of positive integers</a>
%F A075779 f(n, p, k) = binomial(n, k)*hypergeom([1-k, -p, p-n], [1-n, 1], 1).
%e A075779 2; 6,6; 12,16,12; 20,35,35,20; ...
%p A075779 f := proc(n,p,k) convert( binomial(n,k)*hypergeom([1-k,-p,p-n],[1-n,1],1), `StandardFunctions`); end;
%t A075779 t[n_, k_] := n*HypergeometricPFQ[{-k, 2-n, k-n}, {1, 1-n}, 1]; Table[t[n, k], {n, 2, 12}, {k, 1, n-1}] // Flatten (* _Jean-François Alcover_, Jan 14 2014 *)
%Y A075779 Cf. A014410 and A007318 for f(n, k, n), A075779 and A075798 for f(n, k, n-1) and A075780 and A075837 for f(n, k, n-2).
%Y A075779 Cf. A033484 A051597.
%K A075779 nonn,tabl
%O A075779 2,1
%A A075779 _N. J. A. Sloane_, Oct 17 2002