A075780 Triangle T(n,k) = f(n,k,n-2), n >= 2, 1 <= k <= n-1, where f is given below.
0, 3, 3, 12, 14, 12, 30, 45, 45, 30, 60, 114, 138, 114, 60, 105, 245, 357, 357, 245, 105, 168, 468, 808, 960, 808, 468, 168, 252, 819, 1647, 2286, 2286, 1647, 819, 252, 360, 1340, 3090, 4935, 5740, 4935, 3090, 1340, 360, 495, 2079, 5423, 9834, 13090, 13090, 9834, 5423
Offset: 2
Links
- Michel Lassalle, A new family of positive integers
Crossrefs
Programs
-
Maple
f := proc(n,p,k) convert( binomial(n,k)*hypergeom([1-k,-p,p-n],[1-n,1],1), `StandardFunctions`); end;
-
Mathematica
t[n_, k_] := n*(n-1)/2*HypergeometricPFQ[{-k, 3-n, k-n}, {1, 1-n}, 1]; Table[t[n, k], {n, 2, 12}, {k, 1, n-1}] // Flatten (* Jean-François Alcover, Jan 14 2014 *)
Formula
f(n, p, k) = binomial(n, k)*hypergeom([1-k, -p, p-n], [1-n, 1], 1).