A275345 Characteristic polynomials of a square matrix based on A051731 where A051731(1,N)=1 and A051731(N,N)=0 and where N=size of matrix, analogous to the Redheffer matrix.
1, 1, -1, -1, -1, 1, -1, 0, 2, -1, 0, 0, 2, -3, 1, -1, 2, 1, -5, 4, -1, 1, -3, 5, -8, 9, -5, 1, -1, 4, -4, -5, 15, -14, 6, -1, 0, -1, 6, -17, 29, -31, 20, -7, 1, 0, 0, 2, -13, 36, -55, 50, -27, 8, -1, 1, -7, 23, -50, 84, -112, 112, -78, 35, -9, 1
Offset: 0
Examples
{ { 1}, { 1, -1}, {-1, -1, 1}, {-1, 0, 2, -1}, { 0, 0, 2, -3, 1}, {-1, 2, 1, -5, 4, -1}, { 1, -3, 5, -8, 9, -5, 1}, {-1, 4, -4, -5, 15, -14, 6, -1}, { 0, -1, 6, -17, 29, -31, 20, -7, 1}, { 0, 0, 2, -13, 36, -55, 50, -27, 8, -1}, { 1, -7, 23, -50, 84, -112, 112, -78, 35, -9, 1} }
Links
- Mats Granvik, Mathematica program to verify that eigenvalues determine prime signature
- OEIS Wiki, Prime signatures
- Eric Weisstein, Prime signature
- Index to sequences related to prime signature
Crossrefs
Programs
-
Mathematica
Clear[x, AA, nn, s]; Monitor[AA = Flatten[Table[A = Table[Table[If[Mod[n, k] == 0, 1, 0], {k, 1, nn}], {n, 1, nn}]; MatrixForm[A]; a = A[[1, nn]]; A[[1, nn]] = A[[nn, nn]]; A[[nn, nn]] = a; CoefficientList[CharacteristicPolynomial[A, x], x], {nn, 1, 10}]], nn]
Comments