A075798 Triangle T(n,k) = f(n,k,n-1), n >= 0, 0 <= k <= n, where f is given below.
1, 1, 1, 1, 2, 1, 1, 6, 6, 1, 1, 12, 16, 12, 1, 1, 20, 35, 35, 20, 1, 1, 30, 66, 84, 66, 30, 1, 1, 42, 112, 175, 175, 112, 42, 1, 1, 56, 176, 328, 400, 328, 176, 56, 1, 1, 72, 261, 567, 819, 819, 567, 261, 72, 1, 1, 90, 370, 920, 1540, 1820, 1540, 920, 370, 90, 1, 1, 110, 506, 1419, 2706, 3696, 3696, 2706, 1419, 506, 110, 1, 1, 132, 672
Offset: 1
Examples
1; 1,1; 1,2,1; 1,6,6,1; ...
Links
- Michel Lassalle, A new family of positive integers
Crossrefs
Programs
-
Maple
f := proc(n,p,k) convert( binomial(n,k)*hypergeom([1-k,-p,p-n],[1-n,1],1), `StandardFunctions`); end;
-
Mathematica
f[n_, p_, k_] := Binomial[n, k]*HypergeometricPFQ[{1 - k, -p, p-n}, {1-n, 1}, 1]; t[n_, n_] = t[, 0] = 1; t[n, k_] := f[n, k, n-1]; Table[t[n, k], {n, 0, 12}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jan 17 2014 *)
Formula
f(n, p, k) = binomial(n, k)*hypergeom([1-k, -p, p-n], [1-n, 1], 1).