This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A075844 #38 Jul 15 2025 10:52:34 %S A075844 0,6,120,2394,47760,952806,19008360,379214394,7565279520,150926376006, %T A075844 3010962240600,60068318435994,1198355406479280,23907039811149606, %U A075844 476942440816512840,9514941776519107194,189821893089565631040 %N A075844 Numbers k such that 11*k^2 + 4 is a square. %C A075844 Lim. n-> Inf. a(n)/a(n-1) = 10 + 3*sqrt(11). %D A075844 A. H. Beiler, "The Pellian", ch. 22 in Recreations in the Theory of Numbers: The Queen of Mathematics Entertains. Dover, New York, New York, pp. 248-268, 1966. %D A075844 L. E. Dickson, History of the Theory of Numbers, Vol. II, Diophantine Analysis. AMS Chelsea Publishing, Providence, Rhode Island, 1999, pp. 341-400. %D A075844 Peter G. L. Dirichlet, Lectures on Number Theory (History of Mathematics Source Series, V. 16); American Mathematical Society, Providence, Rhode Island, 1999, pp. 139-147. %H A075844 Harvey P. Dale, <a href="/A075844/b075844.txt">Table of n, a(n) for n = 0..750</a> %H A075844 Tanya Khovanova, <a href="http://www.tanyakhovanova.com/RecursiveSequences/RecursiveSequences.html">Recursive Sequences</a> %H A075844 J. J. O'Connor and E. F. Robertson, <a href="https://mathshistory.st-andrews.ac.uk/HistTopics/Pell/">Pell's Equation</a> %H A075844 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/PellEquation.html">Pell Equation.</a> %H A075844 <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (20,-1). %F A075844 a(n) = ((10+3*sqrt(11))^n - (10-3*sqrt(11))^n) / sqrt(11). %F A075844 a(n) = 20*a(n-1) - a(n-2). %F A075844 G.f.: 6*x/(1 - 20*x + x^2). %F A075844 a(n) = (1/3)*(A075839(n+1) - A075839(n)), n>=1. - _N. J. A. Sloane_, Sep 22 2004 %F A075844 a(n) = 6*A075843(n). - _R. J. Mathar_, Jul 03 2011 %p A075844 seq(coeff(series(6*x/(1-20*x+x^2), x, n+1), x, n), n = 0..20); # _G. C. Greubel_, Dec 06 2019 %t A075844 LinearRecurrence[{20,-1},{0,6},20] (* _Harvey P. Dale_, May 28 2012 *) %o A075844 (PARI) my(x='x+O('x^20)); concat([0], Vec(6*x/(1-20*x+x^2))) \\ _G. C. Greubel_, Dec 06 2019 %o A075844 (Magma) R<x>:=PowerSeriesRing(Integers(), 20); [0] cat Coefficients(R!( 6*x/(1 - 20*x + x^2) )); // _G. C. Greubel_, Dec 06 2019 %o A075844 (Sage) %o A075844 def A075844_list(prec): %o A075844 P.<x> = PowerSeriesRing(ZZ, prec) %o A075844 return P( 6*x/(1-20*x+x^2) ).list() %o A075844 A075844_list(20) # _G. C. Greubel_, Dec 06 2019 %o A075844 (GAP) a:=[0,6];; for n in [3..20] do a[n]:=20*a[n-1]-a[n-2]; od; a; # _G. C. Greubel_, Dec 06 2019 %Y A075844 Cf. A221762. %K A075844 nonn,easy %O A075844 0,2 %A A075844 _Gregory V. Richardson_, Oct 14 2002