This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A075848 #36 Jul 14 2025 15:19:55 %S A075848 0,6,36,210,1224,7134,41580,242346,1412496,8232630,47983284,279667074, %T A075848 1630019160,9500447886,55372668156,322735561050,1881040698144, %U A075848 10963508627814,63900011068740,372436557784626,2170719335639016 %N A075848 Numbers k such that 2*k^2 + 9 is a square. %C A075848 Lim_{n->infinity} a(n)/a(n-1) = 3 + 2*sqrt(2). %D A075848 A. H. Beiler, "The Pellian", ch. 22 in Recreations in the Theory of Numbers: The Queen of Mathematics Entertains. Dover, New York, New York, pp. 248-268, 1966. %D A075848 L. E. Dickson, History of the Theory of Numbers, Vol. II, Diophantine Analysis. AMS Chelsea Publishing, Providence, Rhode Island, 1999, pp. 341-400. %D A075848 Peter G. L. Dirichlet, Lectures on Number Theory (History of Mathematics Source Series, V. 16); American Mathematical Society, Providence, Rhode Island, 1999, pp. 139-147. %H A075848 Harvey P. Dale, <a href="/A075848/b075848.txt">Table of n, a(n) for n = 0..1000</a> %H A075848 Hacène Belbachir, Soumeya Merwa Tebtoub, and László Németh, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL23/Nemeth/nemeth7.html">Ellipse Chains and Associated Sequences</a>, J. Int. Seq., Vol. 23 (2020), Article 20.8.5. %H A075848 Tanya Khovanova, <a href="http://www.tanyakhovanova.com/RecursiveSequences/RecursiveSequences.html">Recursive Sequences</a> %H A075848 J. J. O'Connor and E. F. Robertson, <a href="https://mathshistory.st-andrews.ac.uk/HistTopics/Pell/">Pell's Equation</a> %H A075848 Soumeya M. Tebtoub, Hacène Belbachir, and László Németh, <a href="https://hal.archives-ouvertes.fr/hal-02918958/document#page=18">Integer sequences and ellipse chains inside a hyperbola</a>, Proceedings of the 1st International Conference on Algebras, Graphs and Ordered Sets (ALGOS 2020), hal-02918958 [math.cs], 17-18. %H A075848 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/PellEquation.html">Pell Equation.</a> %H A075848 <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (6,-1). %F A075848 a(n) = ((3+2*sqrt(2))^n - (3-2*sqrt(2))^n) * (3/(2*sqrt(2))); %F A075848 a(n) = 6*a(n-1) - a(n-2). %F A075848 a(n) = 6*A001109(n). %F A075848 G.f.: 6x/(1-6x+x^2). - _Philippe Deléham_, Nov 17 2008 %t A075848 LinearRecurrence[{6,-1},{0,6},30] (* _Harvey P. Dale_, Nov 28 2012 *) %K A075848 nonn,easy %O A075848 0,2 %A A075848 _Gregory V. Richardson_, Oct 15 2002