cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A075876 Values of m for which A075825(m) = 1.

This page as a plain text file.
%I A075876 #20 Mar 12 2025 04:44:49
%S A075876 0,2,4,12,52,212,852,3412,13652,54612,218452,873812,3495252,13981012,
%T A075876 55924052,223696212
%N A075876 Values of m for which A075825(m) = 1.
%C A075876 For n > 4 it appears that a(n) = 4*a(n-1) + 4.
%C A075876 From _Robert Israel_, Nov 08 2016: (Start)
%C A075876 By induction, we have for k >= 0:
%C A075876   A075825((10*4^k-7)/3) = 2^(k+1)
%C A075876   A075825((10*4^k-4)/3) = 1
%C A075876   A075825((10*4^k-1)/3) = 2^(k+1)+1
%C A075876   A075825((20*4^k-8)/3) = 2^(k+1)-1
%C A075876   A075825((20*4^k-5)/3) = 2^(k+1)+1
%C A075876   A075825((20*4^k-1)/3) = 2^(k+1)
%C A075876 In particular, this sequence contains b(k) = (10*4^k-4)/3 which is the solution of b(k) = 4*b(k-1)+4 with b(0) = 2.
%C A075876 The only terms <= 2*10^7 that are not of that form are 0 and 4. (End)
%Y A075876 Cf. A075825.
%K A075876 nonn,more
%O A075876 1,2
%A A075876 _John W. Layman_, Oct 16 2002
%E A075876 a(10)-a(14) from _Robert Israel_, Nov 08 2016
%E A075876 a(15)-a(16) from _Sean A. Irvine_, Mar 11 2025