This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A075893 #19 Sep 08 2022 08:45:07 %S A075893 65,113,193,273,393,577,777,1057,1337,1633,1913,2289,2833,3337,3897, %T A075893 4417,4953,5537,6153,7017,8073,9177,10073,10753,11313,12033,13593, %U A075893 15353,17353,18417,20097,21441,23217,24673,26369,28129,29953,31577,33761 %N A075893 Average of three successive primes squared, (prime(n)^2+prime(n+1)^2+prime(n+2)^2)/3, n>=3. %C A075893 Unlike the average of three successive primes, the average of three successive primes (greater than 3) squared is always integral. %C A075893 A133529(n)/3, n >= 3. - _Artur Jasinski_, Sep 30 2007 %H A075893 Vincenzo Librandi, <a href="/A075893/b075893.txt">Table of n, a(n) for n = 3..5000</a> %F A075893 a(n) = (prime(n)^2+prime(n+1)^2+prime(n+2)^2)/3, n>=3. %e A075893 a(3)=65 because (prime(3)^2+prime(4)^2+prime(5)^2)/3=(5^2+7^2+11^2)/3=65. %t A075893 b = {}; a = 2; Do[k = (Prime[n]^a + Prime[n + 1]^a + Prime[n + 2]^a)/3; AppendTo[b, k], {n, 3, 50}]; b (* _Artur Jasinski_, Sep 30 2007 *) %t A075893 Mean[#]&/@Partition[Prime[Range[3,50]]^2,3,1] (* _Harvey P. Dale_, Jun 09 2013 *) %o A075893 (Magma) [(NthPrime(n)^2+NthPrime(n+1)^2+NthPrime(n+2)^2)/3: n in [3..50]]; // _Vincenzo Librandi_, Aug 21 2018 %Y A075893 Cf. A133529, A084951, A133940. %K A075893 easy,nonn %O A075893 3,1 %A A075893 _Zak Seidov_, Oct 17 2002 %E A075893 Edited by _N. J. A. Sloane_, Jun 30 2008 at the suggestion of _R. J. Mathar_