cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A075911 Third column of triangle A075500.

This page as a plain text file.
%I A075911 #14 Jan 01 2018 04:21:28
%S A075911 1,30,625,11250,188125,3018750,47265625,728906250,11133203125,
%T A075911 168996093750,2554931640625,38523925781250,579858642578125,
%U A075911 8717878417968750,130968170166015625,1966522521972656250,29517837677001953125,442967564392089843750,6646513462066650390625
%N A075911 Third column of triangle A075500.
%C A075911 The e.g.f. given below is Sum_{m=0..2} A075513(3,m)*exp(5*(m+1)*x)/2!.
%H A075911 Colin Barker, <a href="/A075911/b075911.txt">Table of n, a(n) for n = 0..849</a>
%H A075911 <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (30,-275,750).
%F A075911 a(n) = A075500(n+3, 3) = (5^n)*S2(n+3, 3) with S2(n, m) = A008277(n, m) (Stirling2).
%F A075911 a(n) = (5^n - 8*10^n + 9*15^n)/2.
%F A075911 G.f.: 1/Product_{k=1..3} (1 - 5*k*x).
%F A075911 E.g.f.: (d^3/dx^3)(((exp(5*x)-1)/5)^3)/3! = (exp(5*x) - 8*exp(10*x) + 9*exp(15*x))/2!.
%F A075911 a(n) = 30*a(n-1) - 275*a(n-2) + 750*a(n-3) for n > 2. - _Colin Barker_, Dec 11 2015
%t A075911 LinearRecurrence[{30,-275,750},{1,30,625},30] (* _Harvey P. Dale_, Oct 06 2017 *)
%o A075911 (PARI) Vec(1/((1-5*x)*(1-10*x)*(1-15*x)) + O(x^30)) \\ _Colin Barker_, Dec 11 2015
%Y A075911 Cf. A016164, A075912.
%K A075911 nonn,easy
%O A075911 0,2
%A A075911 _Wolfdieter Lang_, Oct 02 2002