A075912 Fourth column of triangle A075500.
1, 50, 1625, 43750, 1063125, 24281250, 532890625, 11386718750, 238867578125, 4946347656250, 101481884765625, 2068161621093750, 41943091064453125, 847579699707031250, 17082562164306640625, 343617765808105468750, 6901873153839111328125
Offset: 0
Links
- Colin Barker, Table of n, a(n) for n = 0..767
- Index entries for linear recurrences with constant coefficients, signature (50,-875,6250,-15000).
Programs
-
Mathematica
Table[5^n*(-1 + 3*2^(3+n) + 2^(6+2*n) - 3^(4+n))/6, {n, 0, 20}] (* Vaclav Kotesovec, Dec 12 2015 *)
-
PARI
Vec(1/((1-5*x)*(1-10*x)*(1-15*x)*(1-20*x)) + O(x^30)) \\ Colin Barker, Dec 11 2015
Formula
a(n) = (Sum_{m=0..3}A075513(4, m)*((m+1)*5)^n, m=0..3)/3!.
G.f.: 1/Product_{k=1..4}(1-5*k*x).
E.g.f.: (d^4/dx^4)((((exp(5*x)-1)/5)^4)/4!) = (-exp(5*x) + 24*exp(10*x) - 81*exp(15*x) + 64*exp(20*x))/3!.
a(n) = 50*a(n-1) - 875*a(n-2) + 6250*a(n-3) - 15000*a(n-4) for n>3. - Colin Barker, Dec 11 2015
Comments