cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A075931 List of codewords in binary lexicode with Hamming distance 5 written as decimal numbers.

Original entry on oeis.org

0, 31, 227, 252, 805, 826, 966, 985, 1354, 1365, 1449, 1462, 1647, 1648, 1676, 1683, 6182, 6201, 6341, 6362, 6915, 6940, 7136, 7167, 7532, 7539, 7567, 7568, 7753, 7766, 7850, 7861, 10315, 10324, 10408, 10423, 11118, 11121, 11149, 11154
Offset: 0

Views

Author

Bob Jenkins (bob_jenkins(AT)burtleburtle.net)

Keywords

Crossrefs

Programs

  • PARI
    a=vector(40); n=0; for (k=0, 11154, if (n==0 || vecmin(apply(o -> hammingweight(bitxor(k, o)), a[1..n]))>=5, print1 (a[n++]=k", "))) \\ Rémy Sigrist, Feb 09 2021

A075933 Positions of check bits in code in A075931.

Original entry on oeis.org

15, 51, 85, 106, 150, 171, 219, 237, 247, 279, 297, 455, 537, 557, 594, 643, 803, 863, 998, 1051, 1070, 1112, 1169, 1333, 1345, 1620, 1866, 2076, 2085, 2185, 2372, 2456, 2618, 2800, 2873, 3127, 3284, 3483, 3557, 3763, 4125, 4135, 4174, 4435
Offset: 0

Views

Author

Bob Jenkins (bob_jenkins(AT)burtleburtle.net)

Keywords

References

  • J. H. Conway and N. J. A. Sloane, Lexicographic codes: error-correcting codes from game theory, IEEE Transactions on Information Theory, 32:337-348, 1986.

Crossrefs

A075938 Basis for code in A075937.

Original entry on oeis.org

127, 1927, 6553, 10922, 19252, 98731, 164529, 295709, 559292, 1083662, 2132519, 4230034, 125829127, 427819033, 713031722, 1258291252, 6467616811, 10779361329, 19377684509, 36649828412, 71017955342
Offset: 0

Views

Author

Bob Jenkins (bob_jenkins(AT)burtleburtle.net)

Keywords

References

  • J. H. Conway and N. J. A. Sloane, Lexicographic codes: error-correcting codes from game theory, IEEE Transactions on Information Theory, 32:337-348, 1986.

Crossrefs

Formula

a(n) = b(2^n), where b is A075937, the binary lexicode, d=7.
b(n) = XOR(a(i)) for all i where the i-th bit is set in n.

A075935 Basis for code in A075934.

Original entry on oeis.org

63, 455, 1611, 2709, 12365, 20630, 37463, 70299, 135886, 786510, 1310867, 2363919, 12582995, 20971674, 37749317, 71307271, 138674310, 272892511, 541332108, 3221225558, 5368709276, 9663677009, 18253615171, 35433742539
Offset: 0

Views

Author

Bob Jenkins (bob_jenkins(AT)burtleburtle.net)

Keywords

References

  • J. H. Conway and N. J. A. Sloane, Lexicographic codes: error-correcting codes from game theory, IEEE Transactions on Information Theory, 32:337-348, 1986.

Crossrefs

Formula

a(n) = b(2^n), where b is A075934, the binary lexicode, d=6.
b(n) = XOR(a(i)) for all i where the i-th bit is set in n.
Showing 1-4 of 4 results.