cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A075971 Basis for code in A075970.

Original entry on oeis.org

262143, 133956095, 4164689439, 30480819815, 108067596971, 181775455573, 829778399985, 3308792362796, 13477935949375, 53091885766918, 212211419623001, 373835875492812, 1694348683584839, 6774129833031318
Offset: 0

Views

Author

Bob Jenkins (bob_jenkins(AT)burtleburtle.net)

Keywords

References

  • J. H. Conway and N. J. A. Sloane, Lexicographic codes: error-correcting codes from game theory, IEEE Transactions on Information Theory, 32:337-348, 1986.

Crossrefs

Formula

a(n) = b(2^n), where b is A075970, the binary lexicode, d=18.
b(n) = XOR(a(i)) for all i where the i-th bit is set in n.

A075959 Basis for code in A075958.

Original entry on oeis.org

16383, 2080895, 31572879, 107367603, 178951509, 852302358, 7518471868, 26845989734, 45099980558, 80807926649, 413395279134, 1650354704301, 2886522559562, 13195482418386, 22129859675967, 105554498880184
Offset: 0

Views

Author

Bob Jenkins (bob_jenkins(AT)burtleburtle.net)

Keywords

References

  • J. H. Conway and N. J. A. Sloane, Lexicographic codes: error-correcting codes from game theory, IEEE Transactions on Information Theory, 32:337-348, 1986.

Crossrefs

Formula

a(n) = b(2^n), where b is A075958, the binary lexicode, d=14.
b(n) = XOR(a(i)) for all i where the i-th bit is set in n.

A075962 Basis for code in A075961.

Original entry on oeis.org

32767, 8355967, 126322567, 429496729, 715827882, 1261745355, 32212752798, 109523344903, 182561385259, 322149788877, 1655752033019, 2785432610621, 13200625665306, 22026883141028, 105563899667886, 180876131965012
Offset: 0

Views

Author

Bob Jenkins (bob_jenkins(AT)burtleburtle.net)

Keywords

References

  • J. H. Conway and N. J. A. Sloane, Lexicographic codes: error-correcting codes from game theory, IEEE Transactions on Information Theory, 32:337-348, 1986.

Crossrefs

Formula

a(n) = b(2^n), where b is A075961, the binary lexicode, d=15.
b(n) = XOR(a(i)) for all i where the i-th bit is set in n.

A075964 List of codewords in binary lexicode with Hamming distance 16 written as decimal numbers.

Original entry on oeis.org

0, 65535, 16711935, 16776960, 252645135, 252702960, 267390960, 267448335, 858993459, 859032780, 869020620, 869059635, 1010580540, 1010615235, 1019428035, 1019462460, 1431655765, 1431677610, 1437226410, 1437248085
Offset: 0

Views

Author

Bob Jenkins (bob_jenkins(AT)burtleburtle.net)

Keywords

References

  • J. H. Conway and N. J. A. Sloane, Lexicographic codes: error-correcting codes from game theory, IEEE Transactions on Information Theory, 32:337-348, 1986.

Crossrefs

A075966 Positions of check bits in code in A075964.

Original entry on oeis.org

32767, 4161791, 29855503, 47821619, 57333077, 62187926, 470266684, 739884047, 885118550, 954194330, 1296238070, 1719193211, 2371521077, 2789972808, 4655532892, 7731687593, 8951777524, 18529755064, 27959547250
Offset: 0

Views

Author

Bob Jenkins (bob_jenkins(AT)burtleburtle.net)

Keywords

References

  • J. H. Conway and N. J. A. Sloane, Lexicographic codes: error-correcting codes from game theory, IEEE Transactions on Information Theory, 32:337-348, 1986.

Crossrefs

Showing 1-5 of 5 results.