This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A076004 #10 Dec 25 2017 04:01:22 %S A076004 1,80,4160,179200,6967296,254607360,8940421120,305659904000, %T A076004 10259284361216,339910422691840,11158051230842880,363834840082022400, %U A076004 11805930580539867136,381715961976738283520,12309283295632755261440 %N A076004 Fourth column of triangle A075503. %C A076004 The e.g.f. given below is Sum_{m=0..3} A075513(4,m)*exp(8*(m+1)*x)/3!. %H A076004 Michael De Vlieger, <a href="/A076004/b076004.txt">Table of n, a(n) for n = 0..663</a> %F A076004 a(n) = A075503(n+4, 4) = (8^n)*S2(n+4, 4) with S2(n, m) := A008277(n, m) (Stirling2). %F A076004 a(n) = Sum_{m=0..3} ((A075513(4, m)*(m+1)*8)^n)/3!. %F A076004 G.f.: 1/Product_{k=1..4} (1 - 8*k*x). %F A076004 E.g.f.: (d^4/dx^4)(((exp(8*x)-1)/8)^4)/4! = (-exp(8*x) + 24*exp(16*x) - 81*exp(24*x) + 64*exp(32*x))/3!. %t A076004 With[{m = 4}, Array[8^(# - m) StirlingS2[#, m] &, 15, m]] (* _Michael De Vlieger_, Dec 24 2017, after _Indranil Ghosh_ at A075503 *) %Y A076004 Cf. A076003, A076005. %K A076004 nonn,easy %O A076004 0,2 %A A076004 _Wolfdieter Lang_, Oct 02 2002