This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A076005 #10 Dec 25 2017 04:01:28 %S A076005 1,120,8960,537600,28471296,1393459200,64678789120,2892811468800, %T A076005 125971743113216,5378780147220480,226309257119662080, %U A076005 9416205124868505600,388454135575280091136,15919881384987941928960 %N A076005 Fifth column of triangle A075503. %C A076005 The e.g.f. given below is Sum_{m=0..4} A075513(5,m)*exp(8*(m+1)*x)/4!. %H A076005 Michael De Vlieger, <a href="/A076005/b076005.txt">Table of n, a(n) for n = 0..623</a> %F A076005 a(n) = A075503(n+5, 5) = (8^n)*S2(n+5, 5) with S2(n, m) := A008277(n, m) (Stirling2). %F A076005 a(n) = Sum_{m=0..4} (A075513(5, m)*((m+1)*8)^n)/4!. %F A076005 G.f.: 1/Product_{k=1..5} (1 - 8*k*x). %F A076005 E.g.f.: (d^5/dx^5)(((exp(8*x)-1)/8)^5)/5! = (exp(8*x) - 64*exp(16*x) + 486*exp(24*x) - 1024*exp(32*x) + 625*exp(40*x))/4!. %t A076005 With[{m = 5}, Array[8^(# - m) StirlingS2[#, m] &, 14, m]] (* _Michael De Vlieger_, Dec 24 2017, after _Indranil Ghosh_ at A075503 *) %Y A076005 Cf. A076004, A076006. %K A076005 nonn,easy %O A076005 0,2 %A A076005 _Wolfdieter Lang_, Oct 02 2002