This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A076006 #9 Dec 25 2017 04:01:31 %S A076006 1,168,17024,1354752,93499392,5881430016,346987429888,19548208103424, %T A076006 1064285732077568,56464495286943744,2936605030892961792, %U A076006 150373246607730671616,7606369972746352328704,381025640076812853706752 %N A076006 Sixth column of triangle A075503. %C A076006 The e.g.f. given below is Sum_{m=0..5} (A075513(6,m)*exp(8*(m+1)*x))/5!. %H A076006 Michael De Vlieger, <a href="/A076006/b076006.txt">Table of n, a(n) for n = 0..593</a> %F A076006 a(n) = A075503(n+6, 6) = (8^n)*S2(n+6, 6) with S2(n, m) := A008277(n, m) (Stirling2). %F A076006 a(n) = Sum_{m=0..5} (A075513(6, m)*((m+1)*8)^n)/5!. %F A076006 G.f.: 1/Product_{k=1..6} (1 - 8*k*x). %F A076006 E.g.f.: (d^6/dx^6)(((exp(8*x)-1)/8)^6)/6! = (-exp(8*x) + 160*exp(16*x) - 2430*exp(24*x) + 10240*exp(32*x) - 15625*exp(40*x) + 7776*exp(48*x))/5!. %t A076006 With[{m = 6}, Array[8^(# - m) StirlingS2[#, m] &, 14, m]] (* _Michael De Vlieger_, Dec 24 2017, after _Indranil Ghosh_ at A075503 *) %Y A076006 Cf. A076005, A076007. %K A076006 nonn,easy %O A076006 0,2 %A A076006 _Wolfdieter Lang_, Oct 02 2002