This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A076011 #10 Dec 25 2017 04:01:48 %S A076011 1,135,11340,765450,45605511,2511058725,131122437930,6597627438600, %T A076011 323216347675221,15525889656392115,734898808902814920, %U A076011 34399620992372494950,1596504028634137480131,73607593519321749694305 %N A076011 Fifth column of triangle A075504. %C A076011 The e.g.f. given below is Sum_{m=0..4} (A075513(5,m)*exp(9*(m+1)*x))/4!. %H A076011 Michael De Vlieger, <a href="/A076011/b076011.txt">Table of n, a(n) for n = 0..604</a> %F A076011 a(n) = A075504(n+5, 5) = (9^n)*S2(n+5, 5) with S2(n, m) := A008277(n, m) (Stirling2). %F A076011 a(n) = Sum_{m=0..4} (A075513(5, m)*(9*(m+1))^n)/4!. %F A076011 G.f.: 1/Product_{k=1..5} (1 - 9*k*x). %F A076011 E.g.f.: (d^5/dx^5)(((exp(9*x)-1)/9)^5)/5! = (exp(9*x) - 64*exp(18*x) + 486*exp(27*x) - 1024*exp(36*x) + 625*exp(45*x))/4!. %t A076011 With[{m = 5}, Array[9^(# - m) StirlingS2[#, m] &, 14, m]] (* _Michael De Vlieger_, Dec 24 2017, after _Indranil Ghosh_ at A075504 *) %Y A076011 Cf. A076010, A076012. %K A076011 nonn,easy %O A076011 0,2 %A A076011 _Wolfdieter Lang_, Oct 02 2002