cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A076035 G.f.: 1/(1-4*x*C) where C = (1/2-1/2*(1-4*x)^(1/2))/x = g.f. for Catalan numbers A000108.

Original entry on oeis.org

1, 4, 20, 104, 548, 2904, 15432, 82128, 437444, 2331128, 12426200, 66250672, 353258536, 1883768176, 10045773072, 53573890464, 285714489348, 1523763466296, 8126565627192, 43341046493424, 231149891614008, 1232790669780816, 6574850950474992, 35065749759115104
Offset: 0

Views

Author

N. J. A. Sloane, Oct 29 2002

Keywords

Comments

The Hankel transform of this sequence and that of the aerated sequence with g.f. 1/(1-4x^2*c(x^2)) is 4^n. In general, the expansions of 1/(1-k*x*c(x)) and 1/(1-k*x^2*c(x^2)) have Hankel transform k^n. - Paul Barry, Jan 20 2007

Crossrefs

Programs

  • Maple
    CatalanNumber := n -> binomial(2*n,n)/(n+1):
    h := (n, m) -> hypergeom([1+m, m-n], [m+n+2], -3):
    a := n -> CatalanNumber(n)*(h(n,0) + 6*n/(n+2)*h(n,1)):
    seq(simplify(a(n)), n=0..23); # Peter Luschny, Dec 09 2018
  • Mathematica
    CoefficientList[Series[1/(1-4*x*(1-Sqrt[1-4*x])/(2*x)), {x, 0, 20}], x] (* Vaclav Kotesovec, Feb 13 2014 *)

Formula

a(n) = sum{k=0..n, 3^k*C(2n, n-k)(2k+1)/(n+k+1)}. - Paul Barry, Jun 22 2004
a(n) = Sum_{k, 0<=k<=n} A106566(n, k)*4^k. - Philippe Deléham, Sep 01 2005
a(n) = if(n=0,1,sum{k=1..n, C(2n-k-1,n-k)*k*4^k/n}). - Paul Barry, Jan 20 2007
a(n) = Sum{k, 0<=k<=n}A039599(n,k)*3^k. - Philippe Deléham, Sep 08 2007
a(0)=1, a(n)=(16*a(n-1)-4*A000108(n-1))/3. - Philippe Deléham, Nov 27 2007
3*n*a(n) +2*(9-14*n)*a(n-1) +32*(2*n-3)*a(n-2) = 0. - R. J. Mathar, Nov 14 2011 [proved by Ekhad & Yang, see link]
a(n) ~ 2^(4*n+1) / 3^(n+1). - Vaclav Kotesovec, Feb 13 2014
Conjecture: a(n) = 4*A076025(n), n>0. - R. J. Mathar, Apr 01 2022