cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A076078 a(n) is the number of nonempty sets of distinct positive integers that have a least common multiple of n.

This page as a plain text file.
%I A076078 #49 Mar 15 2024 06:19:41
%S A076078 1,2,2,4,2,10,2,8,4,10,2,44,2,10,10,16,2,44,2,44,10,10,2,184,4,10,8,
%T A076078 44,2,218,2,32,10,10,10,400,2,10,10,184,2,218,2,44,44,10,2,752,4,44,
%U A076078 10,44,2,184,10,184,10,10,2,3748,2,10,44,64,10,218,2,44,10,218,2,3392,2,10
%N A076078 a(n) is the number of nonempty sets of distinct positive integers that have a least common multiple of n.
%C A076078 a(n)=1 iff n=1, a(p^k)=2^k, a(p*q)=10; where p & q are unique primes. a(n) cannot equal an odd number >1. - _Robert G. Wilson v_
%C A076078 If m has more divisors than n, then a(m) > a(n). - _Matthew Vandermast_, Aug 22 2004
%C A076078 If n is of the form p^r*q^s where p & q are distinct primes and r & s are nonnegative integers then a(n)=2^(rs)*(2^(r+s+1) -2^r-2^s+1); for example f(1400846643)=f(3^5*7^8)=2^(5*8)*(2^ (5+8+1)-2^5-2^8+1)=17698838672310272. Also if n=p_1^r_1*p_2^r_2*...*p_k^r_k where p_1,p_2,...,p_k are distinct primes and r_1,r_2,...,r_k are natural numbers then 2^(r_1*r_2*...*r_k)||a(n). - _Farideh Firoozbakht_, Aug 06 2005
%C A076078 None of terms is divisible by Mersenne numbers 3 or 7. For any n, a(n) is congruent to A008836(n) mod 3. Since A008836(n) is always 1 or -1, this implies that A000225(2)=3 never divides a(n). - _Matthew Vandermast_, Oct 12 2010
%C A076078 There are terms divisible by larger Mersenne numbers. For example, a(2*3*5*7*11*13*19*23^3) is divisible by 31. - _Max Alekseyev_, Nov 18 2010
%H A076078 David Wasserman, <a href="/A076078/b076078.txt">Table of n, a(n) for n = 1..1000</a>
%H A076078 <a href="/index/Pri#prime_signature">Index entries for sequences related to prime signature</a>
%F A076078 2^d(n) - 1 = Sum_{m|n} a(m), where d(n) = A000005(n) is the number of divisors of n, so a(n) = Sum_{m|n} mu(n/m)*(2^d(m) - 1).
%F A076078 a(n) = 2*A069626(n), for n > 1. - _Ridouane Oudra_, Mar 12 2024
%e A076078 a(6) = 10. The sets with LCM 6 are {6}, {1,6}, {2,3}, {2,6}, {3,6}, {1,2,3}, {1,2,6}, {1,3,6}, {2,3,6}, {1,2,3,6}.
%p A076078 with(numtheory): seq(add(mobius(n/d)*(2^tau(d)-1), d in divisors(n)), n=1..80); # _Ridouane Oudra_, Mar 12 2024
%t A076078 f[n_] := Block[{d = Divisors[n]}, Plus @@ (MoebiusMu[n/d](2^DivisorSigma[0, d] - 1))]; Table[ f[n], {n, 75}] (* _Robert G. Wilson v_ *)
%o A076078 (PARI) a(n) = local(f, l, s, t, q); f = factor(n); l = matsize(f)[1]; s = 0; forvec(v = vector(l, i, [0, 1]), q = sum(i = 1, l, v[i]); t = (-1)^(l - q)*2^prod(i = 1, l, f[i, 2] + v[i]); s += t); s; \\ Definition corrected by _David Wasserman_, Dec 26 2007
%Y A076078 Cf. A076413, A097210-A097218, A097416, A002235.
%Y A076078 Cf. A069626.
%K A076078 easy,nonn,nice
%O A076078 1,2
%A A076078 _Amarnath Murthy_, Oct 05 2002
%E A076078 Edited by _Dean Hickerson_, Oct 08 2002
%E A076078 Definition corrected by _David Wasserman_, Dec 26 2007
%E A076078 Edited by _Charles R Greathouse IV_, Aug 02 2010
%E A076078 Edited by _Max Alekseyev_, Nov 18 2010