This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A076106 #18 Jul 08 2021 10:40:37 %S A076106 7,73,373,9337,35569,805289,9271903 %N A076106 Out of all the n-digit primes, which one takes the longest time to appear in the digits of Pi (ignoring the initial 3)? The answer is a(n), and it appears at position A076130(n). %C A076106 a(8) requires > 1 billion digits of Pi. - _Michael S. Branicky_, Jul 08 2021 %H A076106 Carlos Rivera, <a href="http://www.primepuzzles.net/puzzles/puzz_040.htm">Puzzle 40. The Pi Prime Search Puzzle (by Patrick De Geest)</a>, The Prime Puzzles and Problems Connection. %e A076106 Of all the 2-digit primes, 11 to 97, the last one to appear in Pi is 73, at position 299 (see A076130). - _N. J. A. Sloane_, Nov 28 2019 %o A076106 (Python) %o A076106 # download https://stuff.mit.edu/afs/sipb/contrib/pi/pi-billion.txt, then %o A076106 with open('pi-billion.txt', 'r') as f: digits_of_pi = f.readline()[2:] %o A076106 # from sympy import S %o A076106 # digits_of_pi = str(S.Pi.n(72*10**4))[2:] # alternate to loading data %o A076106 from sympy import primerange %o A076106 def A076106_A076130(n): %o A076106 global digits_of_pi %o A076106 bigp, bigloc = None, -1 %o A076106 for p in primerange(10**(n-1), 10**n): %o A076106 loc = digits_of_pi.find(str(p)) %o A076106 if loc == -1: print("not enough digits", n, p) %o A076106 if loc > bigloc: %o A076106 bigloc = loc %o A076106 bigp = p %o A076106 return (bigp, bigloc+1) %o A076106 print([A076106_A076130(n)[0] for n in range(1, 6)]) # _Michael S. Branicky_, Jul 08 2021 %Y A076106 Cf. A000796, A047658, A076094, A076129, A076130. %K A076106 hard,more,nonn,base %O A076106 1,1 %A A076106 Jean-Christophe Colin (jc-colin(AT)wanadoo.fr), Oct 31 2002 %E A076106 Definition clarified by _N. J. A. Sloane_, Nov 28 2019 %E A076106 a(7) from _Michael S. Branicky_, Jul 08 2021