This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A076116 #20 Jul 09 2024 08:41:57 %S A076116 1,13,8,0,23,2,46,0,20,8,116,0,163,18,218,6,281,32,352,0,431,50,518,0, %T A076116 28,72,14,0,827,98,946,0,1073,128,1208,0,1351,162,1502,0,1661,200, %U A076116 1828,0,53,242,2186,98,32,43,2576,0,2783,36,2998,0,3221,392,3452,0,3691,450 %N A076116 Start of the smallest string of n consecutive positive numbers with a cube sum, or 0 if no such number exists. %H A076116 Robert Israel, <a href="/A076116/b076116.txt">Table of n, a(n) for n = 1..10000</a> %F A076116 From _Robert Israel_, Nov 15 2023: (Start) %F A076116 If n is odd, then a(n) is the least positive integer of the form (k*A019555(n))^3/n - (n-1)/2 where k is an integer. %F A076116 If n is even, then let v = A007814(n). If v == 1 (mod 3) then a(n) is the least positive integer of the form (k*A019555(n/2))^3/n - (n-1)/2 where k an odd integer; otherwise, a(n) = 0. (End) %p A076116 f:= proc(n) local y,F,t,k,v; %p A076116 if n::odd then %p A076116 F:= ifactors(n)[2]; %p A076116 y:= mul(t[1]^ceil(t[2]/3),t=F); %p A076116 k:= 1+floor((n*(n-1)/2)^(1/3)/y); %p A076116 (k*y)^3/n - (n-1)/2; %p A076116 else %p A076116 v:= padic:-ordp(n,2); %p A076116 if v mod 3 <> 1 then return 0 fi; %p A076116 F:= ifactors(n/2^v)[2]; %p A076116 y:= mul(t[1]^ceil(t[2]/3),t=F)*2^((v-1)/3); %p A076116 k:= 1 + floor((n*(n-1)/2)^(1/3)/y); %p A076116 if k::even then k:= k+1 fi; %p A076116 (k*y)^3/n - (n-1)/2; %p A076116 fi %p A076116 end proc: %p A076116 map(f, [$1..100]); # _Robert Israel_, Nov 15 2023 %t A076116 f[n_] := Module[{y, F, t, k, v}, %t A076116 If[OddQ[n], %t A076116 F = FactorInteger[n]; %t A076116 y = Product[t[[1]]^Ceiling[t[[2]]/3], {t, F}]; %t A076116 k = 1 + Floor[(n*(n-1)/2)^(1/3)/y]; %t A076116 (k*y)^3/n - (n-1)/2 %t A076116 , %t A076116 v = IntegerExponent[n, 2]; %t A076116 If[Mod[v, 3] != 1, Return[0]]; %t A076116 F = FactorInteger[n/2^v]; %t A076116 y = Product[t[[1]]^Ceiling[t[[2]]/3], {t, F}]*2^((v-1)/3); %t A076116 k = 1 + Floor[(n*(n-1)/2)^(1/3)/y]; %t A076116 If[EvenQ[k], k = k+1]; %t A076116 (k*y)^3/n - (n-1)/2]]; %t A076116 Map[f, Range[100]] (* _Jean-François Alcover_, Jul 09 2024, after _Robert Israel_ *) %Y A076116 Cf. A007814, A019555, A076117, A076114. %K A076116 nonn,look %O A076116 1,2 %A A076116 _Amarnath Murthy_, Oct 09 2002 %E A076116 More terms from _David Wasserman_, Apr 02 2005