cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A076166 Primes p such that sum of cubes of even digits of p equals sum of cubes of odd digits of p.

This page as a plain text file.
%I A076166 #29 Dec 16 2018 00:22:26
%S A076166 16447,41467,41647,44617,46147,46471,76441,114451,144511,146407,
%T A076166 404167,404671,414607,415141,416407,440761,441607,451411,460147,
%U A076166 460417,461407,470461,476041,476401,541141,610447,640741,644107,644701,647401,704461,740461,746041,764041
%N A076166 Primes p such that sum of cubes of even digits of p equals sum of cubes of odd digits of p.
%C A076166 Minimal number of digits in p is 5. n such that sum of even digits equals sum of odd digits in A036301.
%C A076166 To find terms of this sequence, one could look at zerofree positive integers having the criterion on sum of cubes of digits. Then permute the digits to see which are prime. Using those digits with 0 and permuting then only needs the check on primality. - _David A. Corneth_, Dec 11 2018
%H A076166 Marius A. Burtea, <a href="/A076166/b076166.txt">Table of n, a(n) for n = 1..5869</a>
%e A076166 16447 is OK because 1^3 + 7^3 = 6^3 + 4^3 + 4^3.
%e A076166 14467 has digits in nondecreasing order (is zerofree). Of the 60 permutations, 16447, 41467, 41647, 44617, 46147, 46471, 76441 are prime. - _David A. Corneth_, Dec 11 2018
%t A076166 oeQ[n_]:=Module[{idn = IntegerDigits[n]}, Total[Select[idn, OddQ]^3] == Total[ Select[idn, EvenQ]^3]]; Select[Range[100000], PrimeQ[#] && oeQ[#] &] (* _Amiram Eldar_, Dec 10 2018 after _Harvey P. Dale_ at A076165 *)
%o A076166 (PARI) isok(p) = isprime(p) && (d=digits(p)) && (sum(i=1, #d, d[i]^3*if(d[i]%2, 1, -1))==0); \\ _Michel Marcus_, Dec 13 2018
%Y A076166 Cf. A009994, A036301.
%Y A076166 Subsequence of A076165.
%K A076166 nonn,base,less
%O A076166 1,1
%A A076166 _Zak Seidov_, Nov 01 2002