This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A076174 #19 Mar 23 2025 16:12:44 %S A076174 0,0,1,9,37,319,743,2509,2761,32891,35201,485333,511073,535097, %T A076174 1115239,19679783,6786821,133033679,136913555,140608675,144135835, %U A076174 678544345,693417203,17692378667,18035598467,165294957803,168163294703 %N A076174 Numerator of Sum_{i+j+k=n, i,j,k>=1} (i*j)/k. %C A076174 a(n) is odd. %C A076174 a(n+2) = Numerators of 4th-order harmonic numbers (defined by Conway and Guy, 1996). - _Alexander Adamchuk_, Jun 14 2008 %D A076174 J. H. Conway and R. K. Guy, The Book of Numbers, New York: Springer-Verlag, pp. 143 and 258-259, 1996. %H A076174 Alexander Adamchuk, Jun 14 2008, <a href="/A076174/b076174.txt">Table of n, a(n) for n = 1..52</a> %F A076174 a(n) = Numerator[Sum[ Sum[ Sum[ Sum[ 1/k, {k,1,l} ], {l,1,m} ], {m,1,n} ], {n,1,s-2} ] ]. a(n) = Numerator[ (n-1)n(n+1)/6 * Sum[ 1/k, {k,4,n+1} ] ]. - _Alexander Adamchuk_, Jun 14 2008 %F A076174 a(n) = Numerator(sum(1/(k+3), k=1..n-2)), n>1. - _Gary Detlefs_, Sep 14 2011 %t A076174 Table[ Numerator[Sum[ Sum[ Sum[ Sum[ 1/k, {k,1,l} ], {l,1,m} ], {m,1,n} ], {n,1,s-2} ] ], {s,1,52} ] Table[ Numerator[ (n-1)n(n+1)/6 * Sum[ 1/k, {k,4,n+1} ] ], {n,1,50}] (* _Alexander Adamchuk_, Jun 14 2008 *) %o A076174 (PARI) a(n)=numerator(sum(i=1,n,sum(j=1,n,sum(k=1,n,if(n-i-j-k,0,1)*i*j/k)))) %Y A076174 Cf. A076175. %Y A076174 Cf. A124837 = Numerators of third-order harmonic numbers (defined by Conway and Guy, 1996). %K A076174 frac,nonn %O A076174 1,4 %A A076174 _Benoit Cloitre_, Nov 01 2002