This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A076214 #32 Aug 06 2024 05:31:09 %S A076214 1,6,3,2,8,4,3,0,1,8,0,4,3,7,8,6,2,8,7,4,1,6,1,5,9,4,7,5,0,6,1,0,5,0, %T A076214 4,4,3,4,0,6,6,2,2,7,5,1,8,4,1,1,0,5,6,0,8,6,8,2,4,2,1,8,0,7,6,8,6,1, %U A076214 1,1,2,2,8,3,8,9,1,1,0,6,0,0,1,2,0,9,7,0,6,2,6,4,9,6,7,9,4,5,3,1,2,3,5,1,1 %N A076214 Decimal expansion of C = Sum_{k>=0} 1/2^(2^k-1). %C A076214 This constant has a nice continued fraction expansion (i.e. only 1 and 2 occur). C arises when looking for a sequence b(n) such that : b(1) = 0, b(n+1) is the smallest integer > b(n) such that the continued fraction for 1/2^b(1) + 1/2^b(2) + ... + 1/2^b(n+1) contains only 1's or 2's. Because b(n) = 2^n-1 and C = Sum_{k>=0} 1/2^b(k). %H A076214 Harry J. Smith, <a href="/A076214/b076214.txt">Table of n, a(n) for n = 1..20000</a> %H A076214 Boris Adamczewski, <a href="http://www.emis.de/journals/JIS/VOL16/Adamczewski/adam6.html">The Many Faces of the Kempner Number</a>, Journal of Integer Sequences, Vol. 16 (2013), Article 13.2.15. %H A076214 Michael Ian Shamos, <a href="http://euro.ecom.cmu.edu/people/faculty/mshamos/PST.pdf">Property Enumerators and a Partial Sum Theorem</a>, 2011; <a href="https://citeseerx.ist.psu.edu/pdf/e503bec3c04c3f94cb267882724dd414e143141b">alternative link</a>. %F A076214 Equals 2 * Sum_{k>=0} 1/2^(2^k) = 2 * A007404. - _Harry J. Smith_, May 09 2009 %F A076214 From _Amiram Eldar_, Mar 12 2024: (Start) %F A076214 Equals 1 + 2 * A078585. %F A076214 Equals 1 + Sum_{k>=1} floor(log_2(k))/2^k (Shamos, 2011, p. 8). (End) %e A076214 1.632843018043786287416159475061050443406622751841105608682421807686111... %t A076214 Take[ RealDigits[ 2*NSum[1/2^2^k, {k, 0, Infinity}, WorkingPrecision -> 120]][[1]], 105] (* _Jean-François Alcover_, Nov 15 2011 *) %o A076214 (PARI) default(realprecision, 20080); x=suminf(k=0, 1/2^(2^k)); x*=2; for (n=1, 20000, d=floor(x); x=(x-d)*10; write("b076214.txt", n, " ", d)); \\ _Harry J. Smith_, May 09 2009 %Y A076214 Cf. A006466 (continued fraction), A007404, A078585. %K A076214 cons,nonn %O A076214 1,2 %A A076214 _Benoit Cloitre_, Nov 03 2002