cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A076220 Number of permutations of 1..n in which every pair of adjacent numbers are relatively prime.

This page as a plain text file.
%I A076220 #28 Aug 13 2017 22:45:02
%S A076220 1,1,2,6,12,72,72,864,1728,13824,22032,555264,476928,17625600,
%T A076220 29599488,321115392,805146624,46097049600,36481536000,2754120268800,
%U A076220 3661604352000,83905105305600,192859121664000,20092043520000000,15074060547686400,1342354557616128000
%N A076220 Number of permutations of 1..n in which every pair of adjacent numbers are relatively prime.
%F A076220 a(p-1) = A086595(p) for prime p. - _Max Alekseyev_, Jun 12 2005
%e A076220 a(4) = 12 since there are 12 permutations of 1234 in which every 2 adjacent numbers are relatively prime: 1234, 1432, 2134, 2143, 2314, 2341, 3214, 3412, 4123, 4132, 4312, 4321.
%p A076220 with(combinat): for n from 1 to 7 do P:=permute(n): ct:=0: for j from 1 to n! do if add(gcd(P[j][i+1],P[j][i]),i=1..n-1)=n-1 then ct:=ct+1 else ct:=ct fi od: a[n]:=ct: od: seq(a[n],n=1..7); # _Emeric Deutsch_, Mar 28 2005
%p A076220 # second Maple program:
%p A076220 b:= proc(s, t) option remember; `if`(s={}, 1, add(
%p A076220       `if`(igcd(i, t)>1, 0, b(s minus {i}, i)), i=s))
%p A076220     end:
%p A076220 a:= n-> b({$1..n}, 1009):
%p A076220 seq(a(n), n=0..14);  # _Alois P. Heinz_, Aug 13 2017
%t A076220 f[n_] := Block[{p = Permutations[ Table[i, {i, 1, n}]], c = 0, k = 1}, While[k < n! + 1, If[ Union[ GCD @@@ Partition[p[[k]], 2, 1]] == {1}, c++ ]; k++ ]; c]; Do[ Print[ f[n]], {n, 2, 15}]
%o A076220 (PARI) {A076220(n)=local(A, d, n, r, M); A=matrix(n,n,i,j,if(gcd(i,j)==1,1,0)); r=0; for(s=1,2^n-1,M=vecextract(A,s,s)^(n-1);d=matsize(M)[1];r+=(-1)^(n-d)*sum(i=1,d,sum(j=1,d,M[i,j])));r} \\ _Max Alekseyev_, Jun 12 2005
%Y A076220 Cf. A086595.
%K A076220 nonn
%O A076220 0,3
%A A076220 _Lior Manor_, Nov 04 2002
%E A076220 Extended by _Frank Ruskey_, Nov 11 2002
%E A076220 a(15)-a(16) from _Ray Chandler_ and _Joshua Zucker_, Apr 10 2005
%E A076220 a(17)-a(24) from _Max Alekseyev_, Jun 12 2005
%E A076220 a(0) prepended and a(25) added by _Alois P. Heinz_, Aug 13 2017