A076227 Number of surviving Collatz residues mod 2^n.
1, 1, 1, 2, 3, 4, 8, 13, 19, 38, 64, 128, 226, 367, 734, 1295, 2114, 4228, 7495, 14990, 27328, 46611, 93222, 168807, 286581, 573162, 1037374, 1762293, 3524586, 6385637, 12771274, 23642078, 41347483, 82694966, 151917636, 263841377, 527682754, 967378591, 1934757182, 3611535862
Offset: 0
Keywords
Examples
n=6: Modulo 64, eight residue classes were counted: r=7, 15, 27, 31, 39, 47, 59, 63. See A075476-A075483. For other 64-8=56 r-classes u(q)=A074473(64k+q) is constant: in 32 class u(q)=2, in 16 classes u(q)=4, in 4 classes u(q)=7 and in 4 cases u(q)=9. E.g., for r=11, 23, 43, 55 A074473(64k+r)=9 independently of k. From _Mike Winkler_, Sep 12 2017: (Start) The next table shows how the theorem works. No entry is equal to zero. k = 3 4 5 6 7 8 9 10 11 12 .. | a(n)= -----------------------------------------------------| n = 2 | 1 | 1 n = 3 | 1 1 | 2 n = 4 | 2 1 | 3 n = 5 | 3 1 | 4 n = 6 | 3 4 1 | 8 n = 7 | 7 5 1 | 13 n = 8 | 12 6 1 | 19 n = 9 | 12 18 7 1 | 38 n = 10 | 30 25 8 1 | 64 n = 11 | 30 55 33 9 1 | 128 : | : : : : .. | : -----------------------------------------------------|------ A100982(k) = 2 3 7 12 30 85 173 476 961 2652 .. | The entries (n,k) in this table are generated by the rule (n+1,k) = (n,k) + (n,k-1). The last value of (n+1,k) is given by n+1 = A056576(k-1), or the highest value in column n is given twice only if A022921(k-2) = 2. Then a(n) is equal to the sum of the entries in row n. For k = 7 there is: 1 = 0 + 1, 5 = 1 + 4, 12 = 5 + 7, 12 = 12 + 0. It is a(9) = 12 + 18 + 7 + 1 = 38. The sum of column k is equal to A100982(k). (End)
Links
- Isaac DeJager, Madeleine Naquin, and Frank Seidl, Colored Motzkin Paths of Higher Order, VERUM 2019.
- Andreas-Stephan Elsenhans, Numerical verification of the Collatz conjecture for billion digit random numbers, arXiv:2502.16743 [math.NT], 2025.
- Tomás Oliveira e Silva, Computational verification of the 3x+1 conjecture.
- Eric Weisstein's World of Mathematics, Brown's Criterion
- M. Winkler, The algorithmic structure of the finite stopping time behavior of the 3x + 1 function, arXiv:1709.03385 [math.GM], 2017.
Programs
-
C
/* call as follows: uint64_t s=survives(0,1,1,0,bits); */ uint64_t survives(uint64_t r, uint64_t m, uint64_t lm, int p2, int fp2) { while(!(m&1) && (m>=lm)) { if(r&1) { r+=(r+1)>>1; m+=m>>1; } else { r>>=1; m>>=1; } } if(m
Phil Carmody, Sep 08 2011 */ -
PARI
/* algorithm for the Theorem */ {limit=30; /*or limit>30*/ R=matrix(limit,limit); R[2,1]=0; R[2,2]=1; for(k=2, limit, if(k>2, print; print1("For n="k-1" in row n: ")); Kappa_k=floor(k*log(3)/log(2)); for(n=k, Kappa_k, R[n+1,k]=R[n,k]+R[n,k-1]); t=floor(1+(k-1)*log(2)/log(3)); a_n=0; for(i=t, k-1, print1(R[k,i]", "); a_n=a_n+R[k,i]); if(k>2, print; print(" and the sum is a(n)="a_n)))} \\ Mike Winkler, Sep 12 2017
Formula
a(n) = Sum_{k=A020915(n+2)..n+1} (n,k). (Theorem, cf. example) - Mike Winkler, Sep 12 2017
From Vladimir M. Zarubin, Aug 11 2019: (Start)
a(0) = 1, a(1) = 1, and for k > 0,
a(n) = 2^n - 2^n*Sum_{k=0..A156301(n)-1} A186009(k+1)/2^A020914(k). - Benjamin Lombardo, Sep 08 2019
Extensions
New terms to n=39 by Phil Carmody, Sep 08 2011
Comments