This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A076236 #12 Aug 25 2019 13:49:04 %S A076236 1,0,7,7,8,9,10,10,10,10,12,12,12,12,13,13,13,14,15,16,16,16,16,16,17, %T A076236 17,17,18,19,19,19,20,20,20,21,22,22,22,22,23,23,24,24,24,24,25,25,25, %U A076236 25,25,26,26,27,28,28,28,30,30,30,31,31,31,31,31,31,31,31,31,31,31,32 %N A076236 a(n) = A050435(n) mod A002808(n). %C A076236 Original name: Remainder when 2nd order composite, A050435(n), is divided by first order composite, A002808(n). - _Michael De Vlieger_, Dec 09 2018 %H A076236 Michael De Vlieger, <a href="/A076236/b076236.txt">Table of n, a(n) for n = 1..10000</a> %F A076236 a(n) = A050435(n) mod A002808(n). %e A076236 Let c(n) be the n-th composite number. a(1) = 1 since c(c(1)) mod c(1) = c(4) mod 4 = 9 mod 4 = 1. a(2) = 0 since c(c(2)) mod c(2) = c(6) mod 6 = 12 mod 6 = 0. - _Michael De Vlieger_, Dec 09 2018 %t A076236 c[n_] := FixedPoint[n + PrimePi[#] + 1 &, n + PrimePi[n] + 1]; Array[Mod[c@ c@ #, c@ #] &, 71] (* _Michael De Vlieger_, Dec 09 2018, after _Robert G. Wilson v_ at A002808 *) %Y A076236 Cf. A002808, A050435-A050439, A065860, A076237-A076239. %K A076236 nonn %O A076236 1,3 %A A076236 _Labos Elemer_, Oct 08 2002 %E A076236 Edited by _Michael De Vlieger_, Dec 09 2018