cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A076247 Trajectory of 1059774 under the Reverse and Add! operation carried out in base 4, written in base 10.

This page as a plain text file.
%I A076247 #10 Oct 18 2019 21:12:55
%S A076247 1059774,4187583,8355006,20822715,83391660,144328605,268919295,
%T A076247 1339676160,1349598705,2683144950,5361370860,9358549725,17380163775,
%U A076247 85563883200,89574690225,173801637750,343262166720,359352580785
%N A076247 Trajectory of 1059774 under the Reverse and Add! operation carried out in base 4, written in base 10.
%C A076247 1059774 = A075421(1096) is the fourth term of A075421 whose base 4 trajectory provably does not contain a palindrome. A proof along the lines of Klaus Brockhaus, On the 'Reverse and Add!' algorithm in base 2, can be based on the formula given below. - The generating function given describes the sequence from a(16) onward; the g.f. for the complete sequence is known but nearly twice as big.
%H A076247 Klaus Brockhaus, <a href="/A058042/a058042.txt">On the 'Reverse and Add!' algorithm in base 2</a>
%H A076247 <a href="/index/Res#RAA">Index entries for sequences related to Reverse and Add!</a>
%F A076247 a(0), ..., a(15) as above; for n > 15 and n = 4 (mod 6): a(n) = 5*4^(2*k+12)-5237765*4^k where k = (n+2)/6; n = 5 (mod 6): a(n) = 5*4^(2*k+12)+246174955*4^k-15 where k = (n+1)/6; n = 0 (mod 6): a(n) = 10*4^(2*k+12)+157132950*4^k-10 where k = n/6; n = 1 (mod 6): a(n) = 20*4^(2*k+12)-20951060*4^k where k = (n-1)/6; n = 2 (mod 6): a(n) = 20*4^(2*k+12)+230461660*4^k-15 where k = (n-2)/6; n = 3 (mod 6): a(n) = 40*4^(2*k+12)+125706360*4^k-10 where k = (n-3)/6. G.f.: -15*(185397326496*x^11+95559181296*x^10+91268404224*x^9-183251937960*x^8-92341098492*x^7 -91268404224*x^6-48628806952*x^5-27174921532*x^4-22884144448*x^3+46483418410*x^2 +23956838719*x+22884144448)/((x-1)*(x^2+x+1)*(2*x^3-1)*(2*x^3+1)*(4*x^3-1))
%e A076247 1059774 (decimal) = 10002232332 -> 10002232332 + 23323220001 = 33332112333 = 4187583 (decimal).
%t A076247 NestWhileList[# + IntegerReverse[#, 4] &, 1059774,  # !=
%t A076247 IntegerReverse[#, 4] &, 1, 23] (* _Robert Price_, Oct 18 2019 *)
%o A076247 (PARI) {m=1059774; stop=19; c=0; while(c<stop,print1(k=m,","); rev=0; while(k>0,d=divrem(k,4); k=d[1]; rev=4*rev+d[2]); c++; m=m+rev)}
%Y A076247 Cf. A075421, A075153, A075466, A075467, A076248.
%K A076247 base,nonn
%O A076247 0,1
%A A076247 _Klaus Brockhaus_, Oct 03 2002