cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A076248 Trajectory of 1059831 under the Reverse and Add! operation carried out in base 4, written in base 10.

This page as a plain text file.
%I A076248 #14 Dec 15 2019 13:59:55
%S A076248 1059831,4728312,7831065,14433270,24913965,56412450,92165625,
%T A076248 208908750,396926625,710289750,1336954560,1398889905,2715199350,
%U A076248 5363547840,5614238385,10894222710,21453945600,21701687025,43073052150
%N A076248 Trajectory of 1059831 under the Reverse and Add! operation carried out in base 4, written in base 10.
%C A076248 1059831 = A075421(1105 ) is the fifth term of A075421 whose base 4 trajectory provably does not contain a palindrome. A proof along the lines of Klaus Brockhaus, On the 'Reverse and Add!' algorithm in base 2, can be based on the formula given below.
%H A076248 Klaus Brockhaus, <a href="/A058042/a058042.txt">On the 'Reverse and Add!' algorithm in base 2</a>
%H A076248 <a href="/index/Res#RAA">Index entries for sequences related to Reverse and Add!</a>
%F A076248 a(0), ..., a(7) as above; for n > 7 and n = 2 (mod 6): a(n) = 5*4^(2*k+9)+3836395*4^k-15 where k = (n+4)/6; n = 3 (mod 6): a(n) = 10*4^(2*k+9)+2450070*4^k-10 where k = (n+3)/6; n = 4 (mod 6): a(n) = 20*4^(2*k+9)-326420*4^k where k = (n+2)/6; n = 5 (mod 6): a(n) = 20*4^(2*k+9)+3544540*4^k-15 where k = (n+1)/6; n = 0 (mod 6): a(n) = 40*4^(2*k+9)+1927800*4^k-10 where k = n/6; n = 1 (mod 6): a(n) = 80*4^(2*k+9)-322580*4^k where k = (n-1)/6. G.f.: -3*(668508000*x^19+444361200*x^18+222142800*x^17-528080680*x^16-356464620*x^15 -125753060*x^14-299532884*x^13-188180432*x^12-143040640*x^11+128992350*x^10+90219415*x^9 +38288125*x^8+28112975*x^7+6666425*x^6+5752375*x^5+424135*x^4+3044705*x^3+2610355*x^2 + 1576104*x+353277)/((x-1)*(x^2+x+1)*(2*x^3-1)*(2*x^3+1)*(4*x^3-1))
%e A076248 1059831 (decimal) = 10002233313 -> 10002233313 + 31333220001 = 102002113320 = 4728312 (decimal).
%t A076248 NestWhileList[# + IntegerReverse[#, 4] &, 1059831,  # != IntegerReverse[ #, 4] &, 1, 23] (* _Robert Price_, Oct 19 2019 *)
%o A076248 (PARI) {m=1059831; stop=19; c=0; while(c<stop,print1(k=m,","); rev=0; while(k>0,d=divrem(k,4); k=d[1]; rev=4*rev+d[2]); c++; m=m+rev)}
%Y A076248 Cf. A075421, A075153, A075466, A075467, A076247.
%K A076248 base,nonn
%O A076248 0,1
%A A076248 _Klaus Brockhaus_, Oct 03 2002