This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A076259 #51 Dec 19 2024 21:15:50 %S A076259 1,1,2,1,1,3,1,2,1,1,2,2,2,1,1,3,3,1,1,2,1,1,2,1,1,2,1,1,3,1,4,2,2,2, %T A076259 1,1,2,1,3,1,1,2,1,1,2,1,3,1,1,3,1,2,1,1,2,2,2,1,1,2,4,1,1,2,1,1,2,1, %U A076259 1,2,1,1,3,1,3,1,4,2,1,1,2,1,3,1,1,2,1,1,2,1,3,2,3,1,2,1,1,2,2,2,1,1,3,3,1 %N A076259 Gaps between squarefree numbers: a(n) = A005117(n+1) - A005117(n). %C A076259 This sequence is unbounded, as a simple consequence of the Chinese remainder theorem. - _Thomas Ordowski_, Jul 22 2015 %C A076259 Conjecture: lim sup_{n->oo} a(n)/log(A005117(n)) = 1/2. - _Thomas Ordowski_, Jul 23 2015 [Note: this conjecture is equivalent to lim sup a(n)/log n = 1/2. - _Charles R Greathouse IV_, Dec 05 2024] %C A076259 a(n) = 1 infinitely often since the density of the squarefree numbers, 6/Pi^2, is greater than 1/2. In particular, at least 2 - Pi^2/6 = 35.5...% of the terms are 1. - _Charles R Greathouse IV_, Jul 23 2015 %C A076259 From _Amiram Eldar_, Mar 09 2021: (Start) %C A076259 The asymptotic density of the occurrences of 1 in this sequence is density(A007674)/density(A005117) = A065474/A059956 = 0.530711... (A065469). %C A076259 The asymptotic density of the occurrences of 2 in this sequence is (density(A069977)-density(A007675))/density(A005117) = (A065474-A206256)/A059956 = 0.324294... (End) %H A076259 Reinhard Zumkeller, <a href="/A076259/b076259.txt">Table of n, a(n) for n = 1..10000</a> %H A076259 Mayank Pandey, <a href="https://arxiv.org/abs/2401.13981">Squarefree numbers in short intervals</a>, arXiv preprint, arXiv:2401.13981 [math.NT], 2024. %F A076259 Asymptotic mean: lim_{n->oo} (1/n) Sum_{k=1..n} a(k) = Pi^2/6 (A013661). - _Amiram Eldar_, Oct 21 2020 %F A076259 a(n) < n^(1/5) for large enough n by a result of Pandey. (The constant Pi^2/6 can be absorbed by any eta > 0.) - _Charles R Greathouse IV_, Dec 04 2024 %e A076259 As 24 = 3*2^3 and 25 = 5^2, the next squarefree number greater A005117(16) = 23 is A005117(17) = 26, therefore a(16) = 26-23 = 3. %p A076259 A076259 := proc(n) A005117(n+1)-A005117(n) ; end proc: # _R. J. Mathar_, Jan 09 2013 %t A076259 Select[Range[200], SquareFreeQ] // Differences (* _Jean-François Alcover_, Mar 10 2019 *) %o A076259 (Haskell) %o A076259 a076259 n = a076259_list !! (n-1) %o A076259 a076259_list = zipWith (-) (tail a005117_list) a005117_list %o A076259 -- _Reinhard Zumkeller_, Aug 03 2012 %o A076259 (PARI) t=1; for(n=2,1e3, if(issquarefree(n), print1(n-t", "); t=n)) \\ _Charles R Greathouse IV_, Jul 23 2015 %o A076259 (Python) %o A076259 from math import isqrt %o A076259 from sympy import mobius %o A076259 def A076259(n): %o A076259 def f(x): return n+x-sum(mobius(k)*(x//k**2) for k in range(1, isqrt(x)+1)) %o A076259 m, k = n, f(n) %o A076259 while m != k: %o A076259 m, k = k, f(k) %o A076259 r, k = n+1, f(n+1)+1 %o A076259 while r != k: %o A076259 r, k = k, f(k)+1 %o A076259 return int(r-m) # _Chai Wah Wu_, Aug 15 2024 %Y A076259 Cf. A005117, A013661, A020753 (records), A020754, A076260. %Y A076259 Cf. A007674, A007675, A059956, A065469, A065474, A069977, A206256. %K A076259 nonn,easy %O A076259 1,3 %A A076259 _Reinhard Zumkeller_, Oct 03 2002