This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A076302 #16 Apr 17 2025 08:09:14 %S A076302 1,1,2,1,1,2,1,3,3,3,1,1,1,1,2,1,2,4,4,4,4,1,1,1,1,1,1,2,1,4,4,4,4,4, %T A076302 4,4,1,1,3,3,3,3,3,3,3,1,2,2,2,4,4,4,4,4,4,1,1,1,1,1,1,1,1,1,1,2,1,3, %U A076302 6,6,6,6,6,6,6,6,6,6,1,1,1,1,1,1,1,1,1,1,1,1,2,1,2,2,2,2,2,4,4,4,4,4,4,4,4 %N A076302 Triangle T(n,k) = number of k-smooth divisors of n, read by rows. %H A076302 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/DivisorFunction.html">Divisor Function</a>. %H A076302 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/SmoothNumber.html">Smooth Number</a>. %F A076302 T(n,n) = A000005(n); %F A076302 T(n,2) = A001511(n) for n>1. %F A076302 T(n,3) = A072078(n) for n>2. %F A076302 T(n,5) = A355583(n) for n>4. %F A076302 Limit_{m->oo} (1/m) * Sum_{n=k..m} T(n,k) = 1/Product_{p prime <= k} (1 - 1/p). - _Amiram Eldar_, Apr 17 2025 %e A076302 Triangle begins: %e A076302 1 %e A076302 1 2 %e A076302 1 1 2 %e A076302 1 3 3 3 %e A076302 1 1 1 1 2 %e A076302 1 2 4 4 4 4 %e A076302 1 1 1 1 1 1 2 %e A076302 1 4 4 4 4 4 4 4 %e A076302 1 1 3 3 3 3 3 3 3 %t A076302 T[n_, k_] := Times@@(IntegerExponent[n, #]+1& /@ Select[Range[2, k], PrimeQ]); %t A076302 Table[T[n, k], {n, 1, 14}, {k, 1, n}] // Flatten (* _Jean-François Alcover_, Sep 15 2021 *) %Y A076302 Cf. A000005, A001511, A072078, A355583. %K A076302 nonn,tabl %O A076302 1,3 %A A076302 _Reinhard Zumkeller_, Mar 14 2003