This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A076303 #16 Nov 21 2020 17:16:36 %S A076303 2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2, %T A076303 2,2,2,2,2,2,6,19,1169,21384,520409,2559029,2922819,3228884,6972029, %U A076303 18244654,24601850,146539491,620041946,865572355,1298955860,3005000777,5169423076,6941400197,9965578146,26183561695,39614218376 %N A076303 Engel expansion of exp(Pi * sqrt(163)) - 262537412640768743. %C A076303 262537412640768743.9999999999992500... is Ramanujan's constant which is extremely close to an integer. The Engel expansion of the fractional part begins with 40 terms 2. %H A076303 OEIS wiki: <a href="/wiki/Ramanujan%27s_constant">Ramanujan's constant</a> %t A076303 EngelExp[ A_, n_ ] := Join[ Array[ 1 &, Floor[ A ]], First@ Transpose @ NestList[ {Ceiling[ 1/Expand[ #[[ 1 ]] #[[ 2 ]] - 1 ]], Expand[ #[[ 1 ]] #[[ 2 ]] - 1]} &, {Ceiling[ 1/(A - Floor[A]) ], A - Floor[A]}, n - 1 ]]; EngelExp[E^(Pi*Sqrt[163]) - 262537412640768743, 52] %o A076303 (PARI) default(realprecision, 100000); r=exp(Pi*sqrt(163))-262537412640768743; for(i=1, 100, s=r*ceil(1/r)-1; print1(ceil(1/r), ", "); r=s); /* _Georg Fischer_, Nov 21 2020 */ %Y A076303 Cf. A006784, A060295. %K A076303 nonn %O A076303 1,1 %A A076303 _Robert G. Wilson v_, Mar 03 2003 %E A076303 More terms from _Georg Fischer_, Nov 21 2020