This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A076358 #22 Jul 13 2020 21:40:15 %S A076358 1,2,3,3,15,15,35,35,35,35,77,77,1001,1001,1001,1001,17017,17017, %T A076358 323323,323323,323323,323323,676039,676039,676039,676039,676039, %U A076358 676039,2800733,2800733,86822723,86822723,86822723,86822723,86822723,86822723 %N A076358 a(n) = numerator(n!/phi(n!)). %C A076358 Denominator of Product_{p<=n, p prime} (1 - 1/p). - _Franz Vrabec_, Jan 28 2014 %H A076358 David A. Corneth, <a href="/A076358/b076358.txt">Table of n, a(n) for n = 1..2926</a> %F A076358 a(n) = numerator(A000142(n)/A048855(n)). %t A076358 Numerator[#/EulerPhi[#]]&/@(Range[40]!) (* _Harvey P. Dale_, Apr 16 2016 *) %o A076358 (PARI) a(n) = denominator(prod(p=1, n, if (isprime(p),(1-1/p), 1))); \\ _Michel Marcus_, Jan 28 2014 %o A076358 (PARI) first(n) = {my(res = vector(n), q = 2); res[1] = 1; res[2] = 1/2; forprime(p = 3, n, for(k = q + 1, p - 1, res[k] = res[k-1] ); res[p] = res[p-1]*(1-1/p); q = p; ); for(k = precprime(n)+1, n, res[k] = res[k-1] ); vector(n, i, denominator(res[i])) } \\ _David A. Corneth_, May 22 2020 %Y A076358 Cf. A000005, A000142, A048855, A076359. %K A076358 easy,nonn,frac %O A076358 1,2 %A A076358 _Labos Elemer_, Oct 08 2002