cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A076377 Numbers k such that k, 2*k, 4*k and 8*k are balanced numbers (A020492).

This page as a plain text file.
%I A076377 #23 Dec 04 2019 09:59:49
%S A076377 105,1485,3135,35343,39105,71145,74613,87087,124605,150195,175305,
%T A076377 192855,263055,413655,421005,697851,930699,1404765,1873485,2471931,
%U A076377 2576115,2965599,3281265,3398625,3937635,4172259,4532625,4589949,4975965,5218521,5474115
%N A076377 Numbers k such that k, 2*k, 4*k and 8*k are balanced numbers (A020492).
%C A076377 The quotients q = Sigma(u)/phi(u) for u = {n, 2n, 4n, 8n} are integers and for all terms, and equal 4, 12, 14, 15 respectively. For u = 16n, q = 31/2, i.e. no integer was found for u < 6000000.
%C A076377 The comment above is true for terms up to a(238) and true for 985 of the first 1000 terms. - _Donovan Johnson_, Mar 03 2013
%H A076377 Amiram Eldar, <a href="/A076377/b076377.txt">Table of n, a(n) for n = 1..10000</a> (calculated using data from Jud McCranie, terms 1..1000 from Donovan Johnson)
%t A076377 f[x_] := DivisorSigma[1, x]/EulerPhi[x] Do[s=f[n]; s1=f[2*n]; s2=f[4*n]; s3=f[8*n] If[IntegerQ[s]&&IntegerQ[s1]&&IntegerQ[s2]&& IntegerQ[s3], Print[n]], {n, 1, 10000000}]
%Y A076377 Cf. A000010, A000203, A055234, A020492, A076375, A076376.
%K A076377 nonn
%O A076377 1,1
%A A076377 _Labos Elemer_, Oct 15 2002
%E A076377 Missing term added by _Donovan Johnson_, Mar 03 2013