A076385 Numbers n such that sum of digits in base 7 is a divisor of sum of prime divisors (A008472).
2, 3, 5, 7, 8, 9, 42, 49, 78, 84, 105, 114, 115, 126, 130, 154, 156, 161, 168, 170, 186, 228, 235, 252, 258, 294, 305, 336, 343, 350, 357, 366, 371, 372, 378, 402, 410, 425, 429, 430, 434, 442, 444, 455, 456, 460, 474, 504, 516, 520, 555, 558, 574, 588, 616
Offset: 1
Programs
-
Maple
A076385 := proc(n) local i,j,t,t1, sod, sopd; t := NULL; for i from 2 to n do t1 := i; sod := 0; while t1 <> 0 do sod := sod + (t1 mod 7); t1 := floor(t1/7); od; sopd := 0; j := 1; while ithprime(j) <= i do if i mod ithprime(j) = 0 then sopd := sopd+ithprime(j); fi; j := j+1; od; if sopd mod sod = 0 then t := t,i; fi; od; t; end;