cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A076393 Decimal expansion of Vardi constant arising in the Sylvester sequence.

This page as a plain text file.
%I A076393 #62 Sep 05 2025 04:47:51
%S A076393 1,2,6,4,0,8,4,7,3,5,3,0,5,3,0,1,1,1,3,0,7,9,5,9,9,5,8,4,1,6,4,6,6,9,
%T A076393 4,9,1,1,1,4,5,6,0,1,7,9,2,0,9,0,6,5,5,3,3,1,5,3,4,5,6,4,1,9,9,0,7,7,
%U A076393 5,9,0,1,6,3,6,2,9,5,1,6,0,1,4,2,2,6,3,9,0,9,2,6,8,3,9,8,5,1,5,0,4,8,0,3,3
%N A076393 Decimal expansion of Vardi constant arising in the Sylvester sequence.
%C A076393 Vardi showed A000058(n) = floor(c^(2^(n+1))+1/2) where c=1.26408473...
%C A076393 Named after the Canadian mathematician Ilan Vardi (b. 1957). - _Amiram Eldar_, Jun 22 2021
%C A076393 This constant is transcendental. - _Quanyu Tang_, Mar 20 2025
%D A076393 Steven R. Finch, Mathematical Constants, Cambridge, 2003, pp. 443-448.
%D A076393 Ronald L. Graham, Donald E. Knuth and Oren Patashnik, Concrete Mathematics. Addison-Wesley, Reading, MA, 2nd. ed., 1994, exercise 4.37, p. 518.
%D A076393 Ilan Vardi, Computational Recreations in Mathematica, Addison-Wesley, 1991, pp. 82-89.
%H A076393 A. V. Aho and N. J. A. Sloane, <a href="https://web.archive.org/web/2024*/https://www.fq.math.ca/Scanned/11-4/aho-a.pdf">Some doubly exponential sequences</a>, Fibonacci Quarterly, Vol. 11, No. 4 (1973), pp. 429-437.
%H A076393 A. V. Aho and N. J. A. Sloane, <a href="/A000058/a000058.pdf">Some doubly exponential sequences</a>, Fibonacci Quarterly, Vol. 11, No. 4 (1973), pp. 429-437 (original plus references that F.Q. forgot to include - see last page!)
%H A076393 Thomas Bloom, <a href="https://www.erdosproblems.com/148">Let F(k) be the number of solutions to 1 = 1/n_1 + ... + 1/n_k, where 1 <= n_1 < ... < n_k are distinct integers. Find good estimates for F(k)</a>, Erdős Problems.
%H A076393 Matthew Brendan Crawford, <a href="http://hdl.handle.net/10919/90573">On the Number of Representations of One as the Sum of Unit Fractions</a>, Master's Thesis, Virginia Polytechnic Institute and State University (2019).
%H A076393 Artūras Dubickas, <a href="https://doi.org/10.1007/s11139-021-00428-5">Transcendency of some constants related to integer sequences of polynomial iterations</a>, Ramanujan J, Vol. 57, 2022, pp. 569-581.
%H A076393 Steven Finch, <a href="https://arxiv.org/abs/2411.16062">Exercises in Iterational Asymptotics</a>, arXiv:2411.16062 [math.NT], 2024. See p. 10.
%H A076393 Zheng Li and Quanyu Tang, <a href="https://arxiv.org/abs/2503.12277">On a conjecture of Erdős and Graham about the Sylvester's sequence</a>, arXiv:2503.12277 [math.NT], 2025. See p. 3.
%H A076393 Benjamin Nill, <a href="https://doi.org/10.1007/s00454-006-1299-y">Volume and lattice points of reflexive simplices</a>, Discrete & Computational Geometry, Vol. 37, No. 2 (2007), pp. 301-320; <a href="https://arxiv.org/abs/math/0412480">arXiv preprint</a>, arXiv:math/0412480 [math.AG], 2004-2007.
%H A076393 Terence Tao, <a href="https://github.com/teorth/erdosproblems/blob/main/README.md#table">Erdős problem database</a>, see no. 148.
%H A076393 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/SylvestersSequence.html">Sylvester's Sequence</a>.
%F A076393 Equals lim_{n->oo} A000058(n)^(1/2^(n+1)). - _Robert FERREOL_, Feb 15 2019
%F A076393 Equals sqrt((3/2) * Product_{k>=0} (1 + 1/(2*A000058(k)-1)^2)^(1/2^(k+1))). - _Amiram Eldar_, Jun 22 2021
%e A076393 1.26408473530530111307959958416466949111456...
%t A076393 digits = 105; For[c = 2; olds = -1; s = 0; j = 1, RealDigits[olds, 10, digits+5] != RealDigits[s, 10, digits+5], j++; c = c^2-c+1, olds = s; s = s + 2^(-j-1)*Log[1+(2*c-1)^-2] // N[#, digits+5]&]; chi = Sqrt[6]/2*Exp[s]; RealDigits[chi, 10, digits] // First (* _Jean-François Alcover_, Jun 05 2014 *)
%Y A076393 Cf. A000058.
%K A076393 cons,easy,nonn,changed
%O A076393 1,2
%A A076393 _Benoit Cloitre_, Nov 06 2002