This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A076398 #20 Feb 16 2025 08:32:47 %S A076398 0,1,1,1,1,1,1,1,2,1,1,1,2,1,1,1,2,1,2,2,2,1,1,1,2,1,1,2,2,2,1,1,2,1, %T A076398 2,1,2,1,3,1,2,1,2,2,2,2,1,1,2,2,2,1,2,3,1,2,2,1,2,1,1,1,2,1,2,2,2,2, %U A076398 1,2,2,1,2,2,2,2,1,3,1,2,2,1,2,3,1,2,2,3,1,1,2,1,2,2,2,2,2,3,1,2,1,2,1,1,3 %N A076398 Number of distinct prime factors of n-th perfect power. %H A076398 Reinhard Zumkeller, <a href="/A076398/b076398.txt">Table of n, a(n) for n = 1..10000</a> %H A076398 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/PerfectPower.html">Perfect Powers</a>. %H A076398 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/DistinctPrimeFactors.html">Distinct Prime Factors</a>. %F A076398 a(n) = A001221(A001597(n)). %F A076398 a(n) = A001221(A025478(n)). %t A076398 ppQ[1] = True; ppQ[n_] := GCD @@ FactorInteger[n][[All, 2]] > 1; PrimeNu /@ Select[Range[10^4], ppQ] (* _Jean-François Alcover_, Jul 15 2017 *) %o A076398 (Haskell) %o A076398 a076398 = a001221 . a025478 -- _Reinhard Zumkeller_, Mar 28 2014 %o A076398 (PARI) lista(nn) = for(n=1, nn, if ((n==1) || ispower(n), print1(omega(n), ", "))); \\ _Michel Marcus_, Jul 15 2017 %o A076398 (Python) %o A076398 from sympy import mobius, integer_nthroot, primenu %o A076398 def A076398(n): %o A076398 def f(x): return int(n-2+x+sum(mobius(k)*(integer_nthroot(x,k)[0]-1) for k in range(2,x.bit_length()))) %o A076398 kmin, kmax = 1,2 %o A076398 while f(kmax) >= kmax: %o A076398 kmax <<= 1 %o A076398 while True: %o A076398 kmid = kmax+kmin>>1 %o A076398 if f(kmid) < kmid: %o A076398 kmax = kmid %o A076398 else: %o A076398 kmin = kmid %o A076398 if kmax-kmin <= 1: %o A076398 break %o A076398 return int(primenu(kmax)) # _Chai Wah Wu_, Aug 14 2024 %Y A076398 Cf. A001221, A001597, A025478, A076399, A076400. %K A076398 nonn %O A076398 1,9 %A A076398 _Reinhard Zumkeller_, Oct 09 2002