This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A076400 #13 Feb 16 2025 08:32:47 %S A076400 1,3,4,3,5,3,4,6,9,3,7,5,9,3,4,8,15,3,9,16,9,6,9,3,15,4,3,15,9,9,10,3, %T A076400 21,5,9,7,15,3,27,3,16,11,9,9,9,25,4,3,9,9,21,3,28,27,3,15,15,12,9,8, %U A076400 4,3,27,5,15,9,15,16,3,21,9,6,21,9,9,16,3,45,3,9,15,13,9,27,3,15,9,27,4 %N A076400 Number of divisors of n-th perfect power. %H A076400 Michael De Vlieger, <a href="/A076400/b076400.txt">Table of n, a(n) for n = 1..10000</a> %H A076400 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/PerfectPower.html">Perfect Powers</a>. %H A076400 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/DivisorFunction.html">Divisor Function</a>. %F A076400 a(n) = A000005(A001597(n)). %t A076400 DivisorSigma[0, {1}~Join~Select[Range[5000], GCD @@ FactorInteger[#][[All, -1]] > 1 &]] (* _Michael De Vlieger_, Dec 16 2021 *) %o A076400 (Python) %o A076400 from sympy import mobius, integer_nthroot, divisor_count %o A076400 def A076400(n): %o A076400 def f(x): return int(n-2+x+sum(mobius(k)*(integer_nthroot(x,k)[0]-1) for k in range(2,x.bit_length()))) %o A076400 kmin, kmax = 1,2 %o A076400 while f(kmax) >= kmax: %o A076400 kmax <<= 1 %o A076400 while True: %o A076400 kmid = kmax+kmin>>1 %o A076400 if f(kmid) < kmid: %o A076400 kmax = kmid %o A076400 else: %o A076400 kmin = kmid %o A076400 if kmax-kmin <= 1: %o A076400 break %o A076400 return int(divisor_count(kmax)) # _Chai Wah Wu_, Aug 14 2024 %Y A076400 Cf. A000005, A001597, A076398, A076399, A076401. %K A076400 nonn %O A076400 1,2 %A A076400 _Reinhard Zumkeller_, Oct 09 2002